Index in position 2 exceeds array bounds using crossval
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Dear all,
I got the following error when using crossval.
Error using crossval>evalFun (line 488)
The function '@(Xtr,Ytr,Xte)predict(fitlm(Xtr,Ytr(:,2)),Xte)' generated the following error:
Index in position 2 exceeds array bounds (must not exceed 1).
Error in crossval>getLossVal (line 525)
funResult = evalFun(funorStr,arg(1:end-1));
Error in crossval (line 424)
[funResult,outarg] = getLossVal(i, nData, cvp, data, predfun);
This is my code. The X and Y are stored in the attached .mat file.
%% Cross validation
hpartition = cvpartition(81,'Holdout',0.2);
idxTrain = training(hpartition);
Xtr = X(idxTrain,:);
Ytr = Y(idxTrain,:);
idxNew = test(hpartition);
Xte = X(idxNew,:);
for i = 1:2
for j = 1:3
fcn{i,1} = @(Xtr, Ytr, Xte) predict(fitlm(Xtr,Ytr(:,i)), Xte);
fcn{i,2} = @(Xtr, Ytr, Xte) predict(fitrsvm(Xtr,Ytr(:,i)), Xte);
fcn{i,3} = @(Xtr, Ytr, Xte) predict(fitrgp(Xtr,Ytr(:,i)), Xte);
mse(i,j) = crossval('mse', X, Y(:,i),'Predfun',fcn{i,j}, 'kfold',10);
end
end
0 commentaires
Réponse acceptée
Nagasai Bharat
le 23 Oct 2020
Hi,
The problem in above code was that crossval does the train-test spilt and it takes in the Ytr as column vector but you did provide Ytr are a 2-D Matrix due to which we were getting that array bound error.The below code snippet should resolve and simplify your issue.
load data
% hpartition = cvpartition(81,'Holdout',0.2);
% idxTrain = training(hpartition);
% Xtr = X(idxTrain,:);
% Ytr = Y(idxTrain,:);
% % Ytr_1 = Y(idxTrain,1);
% % Ytr_2 = Y(idxTrain,2);
% idxNew = test(hpartition);
% Xte = X(idxNew,:);
for i=1:2
for j = 1:3
fcn{i,1} = @(Xtr, Ytr, Xte) predict(fitlm(Xtr,Ytr), Xte);
fcn{i,2} = @(Xtr, Ytr, Xte) predict(fitrsvm(Xtr,Ytr), Xte);
fcn{i,3} = @(Xtr, Ytr, Xte) predict(fitrgp(Xtr,Ytr), Xte);
mse(i,j) = crossval('mse', X, Y(:,i),'Predfun',fcn{i,j}, 'kfold',10);
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Classification Trees dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!