Why Matlab tells the following A*A^T matrix is not a positive Semi-definite Matrix ?

5 vues (au cours des 30 derniers jours)
M = [ 1.0000 0 0 0 0 0;...
0 0.9803 -0.0000 -0.0000 -0.0984 0.0984;...
0 -0.0000 0.9902 -0.0984 0.0000 0.0000;...
0 -0.0000 -0.0984 0.0098 0.0000 -0.0000;...
0 -0.0984 0.0000 0.0000 0.0099 -0.0099;...
0 0.0984 0.0000 -0.0000 -0.0099 0.0099];
Is from and its eigenvalues are
d =
-0.0000
-0.0000
0.0000
1.0000
1.0000
1.0000 =
%When vpa is used it shows
-7.365e-18
-2.12e-18
1.347e-16
1.0
1.0
1.0
So, can't we call matrix M, positive semidefinite ?
Apperciated!

Réponse acceptée

Matt J
Matt J le 22 Oct 2020
Modifié(e) : Matt J le 22 Oct 2020
Yes, it is positive semi-definite. But Matlab's ability to detect that is limited, because finite precision prevents it from computing exact eigenvalues.
  5 commentaires
Matt J
Matt J le 22 Oct 2020
Modifié(e) : Matt J le 22 Oct 2020
It is very easy to prove from the definition of positive semidefiniteness
x.'*(A*A.')*x
=(x.'*A)*(A.'*x)
=(A.'*x).' * (A.'*x)
=dot(A.'*x,A.'*x)
>=0

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by