Apply LSTM network to .ogg files
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I need to apply LSTM and get results for large datasets of .ogg audio files (datasets) in Matlab, Data can be separated into three parts. For example, 80% of all normal and anomaly signals for training (2 classes), 10% for validation, and 10% for testing.
I have used the following code but you can suggest me proper modification:
How to define Normal and Anomaly arrays with different sizes?
How to define Test?
%ADS = audioDatastore('/Users/pooyan/OneDrive - lamar.edu','FileExtensions','.ogg')
folder='/Users/pooyan/Documents/computer Vision';
audio_files=dir(fullfile(folder,'*.ogg'));
j=length(audio_files);
normal = zeros(132300,1); %return matrix size(normal_name)
anomaly = zeros(132300,1);
Fs=44100; %sample rate according to .ogg file
for i = 1:length(audio_files)
normal_name = strcat('normal_',num2str(i),'.ogg');
anomoly_name = strcat('anomaly_',num2str(i),'.ogg');
%[y,Fs] = audioread(filename)
[normal(i)] = audioread(normal_name);
[anomaly(i)] = audioread(anomaly_name); %can add Fs sample rate?
%normal(i) = zeros(size(normal_name),1); %return matrix size(normal_name)
%anomaly(i) = zeros(size(anomaly_name),1);
end
audioTrain = [normal(:,0.8*(1:length(audio_files))),anomaly(:,0.8*(1:length(audio_files)))]; %precentage
audioValidation = [normal(:,0.1*(1:length(audio_files))),anomaly(:,0.1*(1:length(audio_files)))];
% Create an audioFeatureExtractor object
%to extract the centroid and slope of the mel spectrum over time.
aFE = audioFeatureExtractor("SampleRate",Fs, ... %Fs
"SpectralDescriptorInput","melSpectrum", ...
"spectralCentroid",true, ...
"spectralSlope",true);
featuresTrain = extract(aFE,audioTrain);
[numHopsPerSequence,numFeatures,numSignals] = size(featuresTrain);
numHopsPerSequence;
numFeatures;
numSignals;
%treat the extracted features as sequences and use a
%sequenceInputLayer as the first layer of your deep learning model.
featuresTrain = permute(featuresTrain,[2,1,3]);
featuresTrain = squeeze(num2cell(featuresTrain,[1,2]));
numSignals = numel(featuresTrain);
[numFeatures,numHopsPerSequence] = size(featuresTrain{1});
%Extract the validation features.
featuresValidation = extract(aFE,audioValidation);
featuresValidation = permute(featuresValidation,[2,1,3]);
featuresValidation = squeeze(num2cell(featuresValidation,[1,2]));
%Define the network architecture.
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(50,"OutputMode","last")
fullyConnectedLayer(numel(unique(audioTrain))) %%labelTrain=audio
softmaxLayer
classificationLayer];
%To define the training options
options = trainingOptions("adam", ...
"Shuffle","every-epoch", ...
"ValidationData",{featuresValidation,audioValidation}, ... %%labelValidatin=audioValidation
"Plots","training-progress", ...
"Verbose",false);
%To train the network
net = trainNetwork(featuresTrain,audioTrain,layers,options);
%Test the network %10 preccent
normalTest = normal(:,0.1*(1:length(audio_files)));
classify(net,extract(aFE,normalTest)')
anomalyTest = anomaly(:,0.1*(1:length(audio_files)));
classify(net,extract(aFE,anomalyTest)')
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!