How to save loss, rmse, mae, and mape in every training epoch?
13 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Is there any suggestion on how to save the loss, rmse, mae, and mape in every training epoch? I want to compare them in condition of different parameters later.
Cheers
FYI I calculate the rmse, mae, and mape in the end like this:
net = trainNetwork(XTrain,YTrain,layers,options);
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,XTest);
YPred = sig(1)*YPred + mu(1);
YTest = dataTest(1,:);
rmse = sqrt(mean((YPred-YTest).^2))
mae = mean(abs(YPred-YTest))
mape = mean(abs((YPred-YTest)./YTest))*100
0 commentaires
Réponses (1)
Pratik
le 12 Déc 2024
Hi,
To monitor the metrics such as loss, rmse and etc, training options can be used. Also built in metric object can be used to store the values to use later.
Please refer to the following documentation for more information:
0 commentaires
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!