Sturm-Liouville eigenfunctions and the equations that define the eigenvalues
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hey so I'm trying to solve this Sturm-Liouville problem. Here is something I've written so far but I'm not sure how I can apply y(0)=0, and y(1)+y'(1)=0 to y and its derivatives for each case. Please if you have any suggestions on how I can tackle this problem I'd appreciate it.
% Problem_2 the Sturm-Liuoville Problem
% y" + lambda * y = 0, y'(0) = 0, y(1) + y'(1) = 0
% consider the cases lambda = 0, lambda = -alpha^2 > 0, lambda = alpha^2 > 0
% Case (1): lambda = 0 the eq. becomes y"=0
syms x C1 C2
y=C1*x+C2;
diff(y)
% Case (2): lambda = -alpha^2 > 0 the eq. becomes y" - alpha^2 * y = 0
syms x C1 C2 alpha
y1=C1*exp(alpha*x)+C2*exp(-alpha*x);
diff(y1)
% Case (3): lambda = alpha^2 > 0 the eq. becomes y" + alpha^2 * y = 0
syms x C1 C2 alpha
y2=C1*cos(alpha*x)+C2*sin(alpha*x);
diff(y2)
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!