Improve network generalization NarX
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Very good I would do the following: divide my data into 10 parts and each train separately checking with other cells, is crosvalidation guess but I'm a little busy and I'm not sure how. I could explain a little further as performing autocorrelation, cross correlation and other steps to achieve better network generalization NarX and clarify concepts?
Thank you very much.
0 commentaires
Réponse acceptée
Greg Heath
le 15 Fév 2013
I just posted an answer to your question on the NEWSGROUP
Hope this helps
Thank you for formally accepting my answer.
Greg
2 commentaires
Greg Heath
le 15 Fév 2013
Modifié(e) : Greg Heath
le 16 Fév 2013
If you would try your code on the polution_data set we can compare results. I have used the delays ID=1:2, FD=1:2 and H = 16 with dividetrain and MSEgoal = 0.08*Ndof*MSE00a/Neq. A lower goal will cause training to extend to maxepoch (default = 1000; I will change it to 100)). The results are R2a = 0.92 for openloop and 0.88 for closed loop.
I will be experimentinng with this data for some time: Linear trend removal, Significant delays, validation stopping and minimizing H. Not necessarily in that order.
Greg
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!