Confusion Matrix of SVM

6 vues (au cours des 30 derniers jours)
Lana Aydin
Lana Aydin le 4 Nov 2020
Commenté : Lana Aydin le 10 Nov 2020
Hello
I would like to ask about how to find the valure of Linear, Gaussian, Poly = 2, Poly = 3 for dataset of iris
I used the code bellow it runs without problem but I don't know how to calculate the value of them
t = templateSVM('Standardize',true,'BoxConstraint',100,'KernelFunction','linear','KernelScale','auto');
Mdl = fitcecoc(dataTrain(:,2:4),dataTrain.Species,'Learners',t);
Predictions_SVM_Linear = predict(Mdl,dataTest(:,2:4));
figure;
C_SVM_Linear = confusionmat(dataTest.Species,Predictions_SVM_Linear);
cm_SVM_Linear = confusionchart(C_SVM_Linear,{'Iris-setosa','Iris-versicolor','Iris-virginia'});
cm_SVM_Linear.Title = 'Iris Classification Using Linear SVM';
cm_SVM_Linear.RowSummary = 'row-normalized';
cm_SVM_Linear.ColumnSummary = 'column-normalized';

Réponses (1)

Pranav Verma
Pranav Verma le 10 Nov 2020
Hi Baraah,
From your question I understand that you want to use Linear, Gaussian and Polynomial Kernel functions in templateSVM function. You can use the following name, value pairs for these:
  • 'KernelFunction','gaussian'
  • 'KernelFunction','linear'
  • 'KernelFunction','polynomial','PolynomialOrder',2 (for polynomial of order '2')
For further information on the Kernel Functions, please refer to the below documentation:
Thanks
  1 commentaire
Lana Aydin
Lana Aydin le 10 Nov 2020
Ok thank you Pranav, I will check it out. Thanks again.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by