ImageDatastore from text file

1 vue (au cours des 30 derniers jours)
Lin
Lin le 9 Nov 2020
Hi
I need to classify some image data using the trained resnet network.
For the testing data, I need to call them using text file which consist from a sequence directory such as follows:
testingdata.txt:
/DataSet/label1/1.jpg
/DataSet/label1/2.jpg
/DataSet/label1/3.jpg
/DataSet/label1/4.jpg
/DataSet/label2/1.jpg
/DataSet/label2/2.jpg
/DataSet/label2/3.jpg
/DataSet/label2/4.jpg
How to read those image dataset directory from text file, to be used as testing data for deep learning classification.?

Réponse acceptée

Subhadeep Koley
Subhadeep Koley le 9 Nov 2020
Try this code snippet. The below code will read images, whose locations are specified in the testingdata.txt file and will also label them according to their foldernames.
% Read the filenames and put them in cell array
fId = fopen('testingdata.txt');
tline = fgetl(fId);
tlines = cell(0, 1);
while ischar(tline)
tlines{end+1, 1} = (tline);
tline = fgetl(fId);
end
% Create an imageDatastore object
imds = imageDatastore(tlines, 'LabelSource', 'foldernames');
  2 commentaires
Lin
Lin le 10 Nov 2020
thank you very much for your answer.
How about if the directory in the text file list is not uniform such as follows:
testingdata.txt:
/DataSet/label1/imageA/1.jpg
/DataSet/label1/imageB/imageA1/1.jpg
/DataSet/label1/imageC/A/3.jpg
/DataSet/label1/imageD/a/1.jpg
/DataSet/label2/imageA1/1a/2.jpg
/DataSet/label2/imageB/a/2a.jpg
/DataSet/label2/imageC/C1/1c.jpg
/DataSet/label2/imageA/1a/4.jpg
Subhadeep Koley
Subhadeep Koley le 10 Nov 2020
Modifié(e) : Subhadeep Koley le 10 Nov 2020
@LS This can be achieved with a bit more processing. There are a lot of ways to achieve this. The below code might help you.
% Read the filenames and put them in cell array
fId = fopen('testingdata.txt');
tline = fgetl(fId);
tlines = cell(0, 1);
while ischar(tline)
tlines{end+1, 1} = tline;
tline = fgetl(fId);
end
% Create an imageDatastore object
imds = imageDatastore(tlines);
% Modify image labels of the imageDatastore object
expression = 'label[\d]';
funHandle = @(str)regexpi(str, expression, 'match');
customLabels = cellfun(funHandle, squeeze(imds.Files));
imds.Labels = categorical(customLabels);

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Display and Presentation dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by