Designing IIR Filters using Bilinear Transform
21 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Vincent Abraham
le 16 Nov 2020
Réponse apportée : Mathieu NOE
le 16 Nov 2020
I have written the following code to design an IIR filter with a cut-off frequency of 800 Hz. However, I'm not getting the desired cut-off in the plot. Can someone tell me where I went wrong ?
clc;
clear all;
close all;
N = 2;
Wc = 800;
FS = 8000;
wc = 2*pi*Wc/FS;
T = 1;
[a, b] = butter(N, wc, 's');
[ad, bd] = bilinear(a, b, T);
freqz(ad,bd,512,8000);
axis([0 4000 -40 1]);
title('Frequency Response of the Filter')
0 commentaires
Réponse acceptée
Mathieu NOE
le 16 Nov 2020
so final and last version of the answer :
N = 2;
fc = [500 1000];
FS = 8000;
fcn = 2*fc/FS;
T = 1/FS;
freq = logspace(2,log10(FS/2.56));
% [ad, bd] = butter(N, fcn); % digital version
[a, b] = butter(N, 2*pi*fc, 's'); % analog version
figure(1); % allows log x
[g,p] = bode(a,b,2*pi*freq);grid
subplot(2,1,1),semilogx(freq,20*log10(g));
title('Frequency Response of the Filter')
subplot(2,1,2),semilogx(freq,p);grid
[ad, bd] = bilinear(a, b, FS);
figure(2); freqz(ad,bd,freq,FS); % allows only lin x
title('Frequency Response of the Filter')
figure(3); % allows log x
[g,p] = dbode(ad,bd,1/FS,2*pi*freq);
subplot(2,1,1),semilogx(freq,20*log10(g));grid
title('Frequency Response of the Filter')
subplot(2,1,2),semilogx(freq,p);grid
% axis([0 4000 -40 1]);
[ad, bd] = butter(N, fcn); % digital version
figure(4); % allows log x
[g,p] = dbode(ad,bd,1/FS,2*pi*freq);
subplot(2,1,1),semilogx(freq,20*log10(g));grid
title('Frequency Response of the Filter')
subplot(2,1,2),semilogx(freq,p);grid
0 commentaires
Plus de réponses (1)
Mathieu NOE
le 16 Nov 2020
hello
this works - simply wrong computation of normalized cut off frequency
FYI butter will by default generate a digital filter; no need to create an first analog version to discretize with bilinear
also I tested the freqz display (linear frequency axis) vs traditionnal log x bode plot;
clc;
clear all;
close all;
N = 2;
fc = 800;
FS = 8000;
fcn = 2*fc/FS;
T = 1/FS;
[ad, bd] = butter(N, fcn);
freq = logspace(2,log10(FS/2.56));
figure(1); freqz(ad,bd,freq,FS); % allows only lin x
title('Frequency Response of the Filter')
figure(2); % allows log x
[g,p] = dbode(ad,bd,1/FS,2*pi*freq);
subplot(2,1,1),semilogx(freq,20*log10(g));
title('Frequency Response of the Filter')
subplot(2,1,2),semilogx(freq,p);
% axis([0 4000 -40 1]);
8 commentaires
Mathieu NOE
le 16 Nov 2020
you're welcome
I will put the last version of the code in the answer section, if you don't mind accep it ! tx
Voir également
Catégories
En savoir plus sur Analog Filters dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!