Creating Diagonal Matrix from a Vector

19 vues (au cours des 30 derniers jours)
Piyush Gupta
Piyush Gupta le 16 Nov 2020
Réponse apportée : KSSV le 16 Nov 2020
I have a vector g = [g0 g1 g2 g3 ... gx]
I want to create a matrix of the form:
Here x = (m-n)
Any thoughts on how I can do this?

Réponse acceptée

Stephen23
Stephen23 le 16 Nov 2020
The efficient MATLAB approach:
g = [1,2,3,4,5];
z = zeros(1,numel(g)-1);
m = toeplitz([g(1),z],[g,z])
m = 5×9
1 2 3 4 5 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 1 2 3 4 5

Plus de réponses (3)

Ameer Hamza
Ameer Hamza le 16 Nov 2020
Modifié(e) : Ameer Hamza le 16 Nov 2020
This is one way
g = [1 2 3 4 5];
n = numel(g);
M_ = [eye(n) zeros(n,n-1)];
M = zeros(n, 2*n-1);
for i = 1:n
M = M + circshift(M_*g(i), i-1, 2);
end
Result
>> M
M =
1 2 3 4 5 0 0 0 0
0 1 2 3 4 5 0 0 0
0 0 1 2 3 4 5 0 0
0 0 0 1 2 3 4 5 0
0 0 0 0 1 2 3 4 5

Bruno Luong
Bruno Luong le 16 Nov 2020
Modifié(e) : Bruno Luong le 16 Nov 2020
>> g=[1 2 3]
g =
1 2 3
>> p=length(g);
>> s=10;
>> A=full(spdiags(repmat(g,s,1),0:p-1,s,s+p-1))
A =
1 2 3 0 0 0 0 0 0 0 0 0
0 1 2 3 0 0 0 0 0 0 0 0
0 0 1 2 3 0 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0 0 0 0
0 0 0 0 1 2 3 0 0 0 0 0
0 0 0 0 0 1 2 3 0 0 0 0
0 0 0 0 0 0 1 2 3 0 0 0
0 0 0 0 0 0 0 1 2 3 0 0
0 0 0 0 0 0 0 0 1 2 3 0
0 0 0 0 0 0 0 0 0 1 2 3
% This work as well
>> A = toeplitz([g(1) zeros(1,s-1)],[g zeros(1,s-1)]);

KSSV
KSSV le 16 Nov 2020
g = rand(1,4) ;
m = length(g) ;
P =zeros(m) ;
d=size(diag(P,i),1);%this is the size of the vector with elements of the kth diagonal
for i = 1:m
e=g(i)*ones(m+1-i,1);
P = P+diag(e,i-1);
end

Catégories

En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by