How do I find the given eigenvectors

5 vues (au cours des 30 derniers jours)
kimi
kimi le 16 Nov 2020
Hello,
I have a 8x8 identity eigenvalue matrix (ss) and the answer 4x8 eigenvector matrix (ivect). I'm unsure of the process to get to the eigenvector matrix.
>> ss
ss =
1.0e+02 *
Columns 1 through 5
0.0000 + 2.7894i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 - 2.7894i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 1.9015i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 1.9015i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 1.3474i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
Columns 6 through 8
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
-0.0000 - 1.3474i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i -0.0000 + 1.4094i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 1.4094i
ivect =
1.0e+02 *
Columns 1 through 5
0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i
0.0000 - 0.0011i 0.0000 + 0.0767i 0.0000 - 0.0097i 0.0000 + 0.0112i 0.0000 + 0.0011i
0.0000 - 0.0040i 0.0000 + 0.0645i 0.0000 + 0.2500i 0.0000 - 1.0500i 0.0000 + 0.0040i
-0.0097 + 0.0000i 0.0183 + 0.0000i 0.2850 + 0.0000i 0.9660 + 0.0000i -0.0097 + 0.0000i
Columns 6 through 8
0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i
0.0000 - 0.0767i 0.0000 + 0.0097i 0.0000 - 0.0112i
0.0000 - 0.0645i 0.0000 - 0.2500i 0.0000 + 1.0500i
0.0183 + 0.0000i 0.2850 + 0.0000i 0.9660 + 0.0000i

Réponses (1)

Athul Prakash
Athul Prakash le 19 Nov 2020
I presume that you've obtained these eigenvalues by calling the 'eig' function in MATLAB. You may try calling the same with a second output argument to obtain corresponding eigenvectors as well -
[A,B] = eig(m1);
I suggest going through the documentation of 'eig' for a fuller understanding, if requried - The exmaples, in particular, may be useful.
Hope it Helps!

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by