nxn matrix as an input argument in function

86 vues (au cours des 30 derniers jours)
Sarah Molina Esteves
Sarah Molina Esteves le 16 Nov 2020
Commenté : Umar le 9 Août 2024
function x = matrix(b, L, U)
A= L * U
x= inv(A)*b
end
I am trying to write a function that solves for A an matrix, b a known vector and x an unknown vector. How can I make the above work? In what form am I to input b, L and U into the function arguments?
For
b = $ \begin{pmatrix}a\\ b \\ c \end{pmatrix} $.
L =$ \begin{pmatrix} d & e & f\\ g & h & i \\ j & k & l\end{pmatrix} $
U=$ \begin{pmatrix} m & n & o\\ p & q & r \\ s & t & u\end{pmatrix} $
would my input be like this: matrix([a][b][c], [d,e,f][g,h,i][j,k,l], [m,n,o][p,q,r][s,t,u]) ??
  1 commentaire
Umar
Umar le 9 Août 2024
Hi @Sarah Molina Esteves ,
You have already defined a function named matrix that takes three arguments: b, L, and U. The function calculates the matrix A by multiplying L and U and then solves for x using the equation x = inv(A) * b. When calling the matrix function, you need to provide the inputs b, L, and U in the correct format. Since b is a vector and L, U are matrices, you should input them as follows:
b = [a; b; c];
L = [d, e, f; g, h, i; j, k, l];
U = [m, n, o; p, q, r; s, t, u];
x = matrix(b, L, U);
In MATLAB, vectors are defined using square brackets [ ] and semicolons ; to separate elements vertically, while matrices are defined using square brackets [ ] and commas , to separate elements horizontally within rows.I think this is what @Adriano Filippo Inno is trying to tell you. Hope this helps.

Connectez-vous pour commenter.

Réponses (1)

Adriano Filippo Inno
Adriano Filippo Inno le 17 Nov 2020
Modifié(e) : Adriano Filippo Inno le 17 Nov 2020
I'm a bit confused by your question. Do you need to solve a linear system with the LU method?
If yes, this function will work:
function x = linSys(A, b)
[L,U,P] = lu(A); % LU decomposition
y = L\(P*b);
x = U\y;
end
To use it:
A = magic(5); % define your A here
b = ones(5, 1); % define your b here
x = linSys(A, b);

Catégories

En savoir plus sur Matrix Decomposition dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by