Vectorization in more than two dimensions

6 vues (au cours des 30 derniers jours)
Nicole Brimhall
Nicole Brimhall le 25 Nov 2020
Commenté : Nicole Brimhall le 25 Nov 2020
Is there a way to use vectorized operations in more than two dimensions? For example, in the following code I want to create a three-dimensional matrix based off a function in three variables. I am able to vectorize in two dimensions using the transpose function, but for the third dimension I use a for loop. Is there a way to eliminate the loop?
x=1:1000;x=x';
y=1:586;
z=1:247;
U=zeros(length(x),length(y),length(z));
for cnt=1:length(z)
U(:,:,cnt)=(x.^2+y.^3*z(cnt)).*exp(x*z(cnt).^2).*besselj(0,y);
end
  1 commentaire
Nicole Brimhall
Nicole Brimhall le 25 Nov 2020
I think I figured out a solution. If there is a more elegant way, I am all ears. I want to extend this to five dimensions, and keeping track of the permutations is going to be tricky.
x=1:5;
y=1:6;
z=1:3;
X=repmat(x',[1 length(y) length(z)]);
Y=repmat(y,[length(x) 1 length(z)]);
Z=repmat(z,[length(x) 1 length(y)]);Z=permute(Z,[1 3 2]);
U=(X.^2+Y.^3.*Z).*exp(X.*Z.^2).*besselj(0,y);

Connectez-vous pour commenter.

Réponses (1)

Walter Roberson
Walter Roberson le 25 Nov 2020
Modifié(e) : Walter Roberson le 25 Nov 2020
X = reshape(1:5, [], 1, 1);
Y = reshape(1:6, 1, [], 1);
Z = reshape(1:3, 1, 1, []);
U = (X.^2+Y.^3.*Z).*exp(X.*Z.^2).*besselj(0,Y);
size(U)
ans = 1×3
5 6 3
Need R2016b or later.
  2 commentaires
Jan
Jan le 25 Nov 2020
This is much more efficient then expanding the arrays. besselj is expensive. Then expanding the argument wastes a lot of time with calculating the results for the same inputs.
Nicole Brimhall
Nicole Brimhall le 25 Nov 2020
Thank you. That was very helpful.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by