I tried to solve this system of ODE and it took so long to give me results.
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
function [xprime] = CRungeKutta1(t,x)
r=sqrt(x(1)^2+x(2)^2);
while (2<r & r<=2.01)
A=(16.3096-7.1548*r)/r;
L=-log(r-2);
B=2*(0.4056*L^2+1.49681*L-1.9108)/(r*(L^2+6.0425*L+6.32549));
end
while (2.01<r & r<2.5)
A=-4.3833+17.7176*r^-1+14.8204*r^-2-92.4471*r^-3-46.3151*r^-4+232.2304*r^-5;
B=-3.1918+12.3641*r^-1+11.4615*r^-2-65.2926*r^-3-36.4909*r^-4+154.8074*r^-5;
end
if (r>=2.5)
A=5*r^-3-8*r^-5+25*r^-6-35*r^-8+125*r^-9-102*r^-10+12.5*r^-11+430*r^-12;
B=(1/3)*(16*r^-5+10*r^-8-36*r^-10-25*r^-11-36*r^-12);
end
e=x(1).*x(2).*(B-A)/r.^2;
xprime=[x(2)+e.*x(1)-0.5*B.*x(2); e.*x(2)-0.5*B.*x(1)];
end
I type on command window
X0=[-10,0.2]
tspan=[0:0.1:200]
[t,x]=ode45(@CRungeKutta1,tspan,X0)
I tried to solve this system of ODE but it takes so long to do it. Anybody can tell me why? Please helps . Thanks
0 commentaires
Réponse acceptée
ChristianW
le 13 Mar 2013
Pretty sure your function hang up in the while loops. I guess it should be IF instead of WHILE.
while 2<r
This is an endless loop because you are not changing r in the loop.
5 commentaires
ChristianW
le 13 Mar 2013
Modifié(e) : ChristianW
le 13 Mar 2013
If your radius is r<=2 then you put r=2. Then L become inf because of log(0). Then B becomes NaN.
I don't know your system, but if the radius r can't be smaller then 2, then you may need a event function. For an example, check out:
ballode
open ballode
odeexamples
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!