Reinforcement Learning experience buffer length and parallelisation toolbox
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Tech Logg Ding
le 2 Déc 2020
Modifié(e) : Emmanouil Tzorakoleftherakis
le 3 Déc 2020
When parallelisation is used when training a DDPG agent with the following settings:
trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = -1;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';
Does the the parallel simulations have their own experience buffer? This could take up more memory hence I am hoping that only one experience buffer is stored to update the critic network.
From the documentations, it seems like there will only be one experience buffer as the experiences are sent back to the host.
0 commentaires
Réponse acceptée
Emmanouil Tzorakoleftherakis
le 3 Déc 2020
Modifié(e) : Emmanouil Tzorakoleftherakis
le 3 Déc 2020
Hello,
There is one big experience buffer on the host, the size of which you determine as usual in your agent options. Each worker has a much smaller buffer to collect experiences until you reach "StepsUntilDataIsSent".
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Training and Simulation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!