How to count kfoldloss error from ClassificationLinear?

1 vue (au cours des 30 derniers jours)
Yean Lim
Yean Lim le 7 Déc 2020
cv = cvpartition(numel(y_trainUndersampled),'Kfold',5);
hyperOpt = struct('AcquisitionFunctionName','expected-improvement-plus',...
'Optimizer','bayesopt','MaxObjectiveEvaluations', 100,...
'CVPartition', cv);
bestLogsMdl = fitclinear(X_trainUndersampled, y_trainUndersampled,...
'Learner', 'logistic',...
'OptimizeHyperparameters',{'Lambda','Regularization'},...
'HyperparameterOptimizationOptions',hyperOpt,...
'ScoreTransform','logit');
Hi, I have used hyperparameter optimization on fitclinear function. The code above produces bestLogsMdl as ClassificationLinear.
I want to use ClassificationLinear to count the kfoldLoss.
However based on the documentation in https://uk.mathworks.com/help/stats/fitclinear.html#bu5mw4p , kfoldLoss is used on ClassificationPartitionedLinear
How to use hyperparameter optimization with fitclinear together on the kfoldLoss? What modifications are needed on the fitclinear so it would produce ClassificationPartitionedLinear?
My ultimate goal is to plot a misclassification rate vs number of learning cycles graph

Réponse acceptée

Walter Roberson
Walter Roberson le 8 Déc 2020
Modifié(e) : Walter Roberson le 10 Déc 2020
You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.
So you need to get rid of OptimizeHyperParameters and set appropriate HyperparameterOptimizationOptions

Plus de réponses (0)

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by