neural network with bayesian regularization: find weights and biases and recalculate the network
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Michael Arnold
le 11 Déc 2020
Modifié(e) : Michael Arnold
le 15 Déc 2020
Hey,
i´m trying to use a neural network to guess functional values for unknown points. This is my current solution.
%target f(x)=(x^2 + 22*x - 100)/(4*x)
%for x = [2,9]
inputall = 2:0.01:9;
outputall = (inputall.^2+22*inputall-100)./(4*inputall);
%training data
inputtrain = 2:1:9;
outputtrain = (inputtrain.^2+22*inputtrain-100)./(4*inputtrain);
%neural network
neurons = 5;
net = feedforwardnet(neurons,'trainbr');
net = train(net,inputtrain,outputtrain);
%prediction
predict(1,:) = net(inputall);
%comparison
comp = [outputall' predict']
%visualization
figure('Name','comparison'); hold on;
plot(inputall,outputall);
plot(inputall,predict)
Now I want to know what weights and biases the network finaly used. How can i get them and is it possible to use them to recalculate by myself the solution of the network?
Best regards
Michael
0 commentaires
Réponse acceptée
Sai Veeramachaneni
le 15 Déc 2020
Hi,
You can use net.IW, net.LW, net.b properties of neural network object to get weights and biases used in the network.
References:
1 commentaire
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!