How to solve dimension problem
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I got script like this and for some reason it works with some audio samples and with other it doesnt.
asc
ascacsSamples have same length exactly same number of samples but for some reason it gives me this error.
%
rm
assignment because the size of the left side is 13-by-1 and the size of the right side
is 3-by-1.
Error in stFeatureExtractionmfcc (line 61)
mfccFeatures(:,i) = zeros(numOfFeatures, 1);
Error in Mfccshoww (line 39)
Curframe{i} = stFeatureExtractionmfcc(frame, fs, 0.09, 0.03);
[Signal, fs] = audioread('long_sample_1.wav');
if (size(Signal,2)>1)
Signal = (sum(Signal,2)/2);% convert to MONO
end
% win = 0.31;
% step = 0.2;
%Testsamplemfcc = stFeatureExtractionmfcc(Signal, fs, win, step);
%spectrum model
% % fs = 44100;
% % T = 1/fs;
% % L = length(Features);
% % f = fs*(0:L-1)/L;
% % t = (0:L-1)*T;
% %
win = 0.31;
%win = 0.310090703; %% length of a single bark match with the window and step
step = 0.1;
curPos = 1;
windowLength = (win * fs);
Stepf = round(step * fs);
d = cell(1,1);
Length_signal = length(Signal);
numberOfFrames = floor((Length_signal-windowLength)/Stepf) + 1;
% = Featuresaudio(1:windowLength);
% % Featuresaudio
% [Features] = getDFT(Featuresaudio, 44100);
Ham = window(@hamming, windowLength);
for i = 1:numberOfFrames
frame = (Signal(curPos:curPos+windowLength-1));
%frame = frame .* Ham;
Curframe{i} = stFeatureExtractionmfcc(frame, fs, 0.09, 0.03);
%Curframe{i} = mean(Curframe{i},2);
Curframe{i} = Curframe{i}; % in case of transposing
d{i}= ((Curframe{i}-mfccFeatures{1}).^2);
d{i} = sum(d{i});
d{i} = sum(d{i},2);
curPos = curPos + Stepf;
end
d = cell2mat(d);
idx = zeros(1,1)
if all(d(:) > 200)
fprintf('Dog wasnt found in any frame')
else
idx = find(d(:) < 170);
%fprintf('Dog detected in frame number %d\n',idx(:))
end
for i = 1:length(idx);
idx(i) = idx(i) *0.1;
end
idx = round(idx,2);
fprintf('Dog detected at second %0.2f\n',idx(:))
0 commentaires
Réponses (1)
Matt Gaidica
le 13 Déc 2020
It appears stFeatureExtractionmfcc() is returning multiple values. What is in that function?
6 commentaires
Walter Roberson
le 26 Fév 2021
No, the situation is undefined, the code can only extract features when features exist, and does not define what the output should be when no features exist.
Voir également
Catégories
En savoir plus sur Time-Frequency Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!