How can i evaluate this surface integral? (It has some singularities)
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Im trying to integrate the following function over X (0->Pi) and then y (0-> 2*Pi).
When i create a surface (x,y,z) after a very fine meshgrid (1000 x 1000), i see what appears to be 4 very sharp singularities.
Is there any way to evaluate this integral by ignoring or smoothing over those singularities?
Any help would be greatly appreciated.
FYI i am using matlab 2011b.
@(x,y)-sin(x).*(sin(y).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(cos(x).^2.*cos(y).^2.*1.05e2+cos(y).^2.*sin(x).^2.*4.58e2-cos(x).^4.*sin(y).^2.*9.72e2-sin(x).^4.*sin(y).^2.*9.72e2+cos(x).^2.*sin(x).^2.*sin(y).^2.*1.944e3).*(3.0./5.0e3)+cos(x).^2.*cos(y).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(cos(x).^2.*cos(y).^2.*-1.087e3+cos(y).^2.*sin(x).^2.*3.15e2+cos(x).^4.*sin(y).^2.*3.15e2+sin(x).^4.*sin(y).^2.*3.15e2-cos(x).^2.*sin(x).^2.*sin(y).^2.*6.3e2).*(1.0./5.0e3)+cos(y).^2.*sin(x).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(cos(x).^2.*cos(y).^2.*1.05e2-cos(y).^2.*sin(x).^2.*9.72e2+cos(x).^4.*sin(y).^2.*4.58e2+sin(x).^4.*sin(y).^2.*4.58e2-cos(x).^2.*sin(x).^2.*sin(y).^2.*9.16e2).*(3.0./5.0e3)-cos(x).^2.*cos(y).^4.*sin(x).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(4.29e2./5.0e2)-cos(x).*cos(y).^2.*sin(y).*(cos(x).^3.*sin(y)-cos(x).*sin(x).^2.*sin(y)).*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(4.29e2./5.0e2)+cos(y).^2.*sin(x).*sin(y).*(sin(x).^3.*sin(y)-cos(x).^2.*sin(x).*sin(y)).*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(4.29e2./5.0e2))
0 commentaires
Réponses (1)
Mike Hosea
le 4 Avr 2013
When I split the integral up into regions with difficult parts (a couple of circles) on the boundaries, I can get QUAD2D and INTEGRAL2 to integrate over the regions only if I cap the values of the integrand function (z(z>M) = M and z(z<-M)=-M). Because the value of the integral increases steadily as I increase M (until the integration fails because of numerical or minimum step size issues), I don't think the singularities are integrable, i.e. whatever you do to mitigate the singularities will probably just change the problem to an easier problem with a different answer.
0 commentaires
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!