Vectorizing nonlinear matrix operation on many small matrices
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to optimize the following generic matrix operation:
m = 3; % small number in general
n = 2^20; % large power of 2 in general
A = rand(m,n);
B = zeros(m^2,m^2);
for ii = 1:size(A,2)
a = A(:,ii);
r = a*a';
B = B + kron(r,r);
end
% return B
On my computer the above takes ~7s. By compiling to a MEX file with MATLAB Coder I can improve this by ~15x. I have tried compiling to CUDA with GPU Coder, but this seems to be quite inefficient.
I think the difficulty comes from two different sources:
1) I am not sure of an efficient way to vectorize the creation of the "r" matrices from the columns of the A matrix, and so have to resort to the outer for loop approach
2) I think the Kronecker product is inefficient to implement on the gpu due to the small matrix size
The speedup from compiling to MEX is nice, but I just have this feeling that I am still doing something quite inefficiently. I would appreciate if anyone has any ideas on how to optimize the above calculation, either along the lines of the two difficulties I outlined above, or via a different approach.
2 commentaires
David Goodmanson
le 19 Déc 2020
Hi Adam,
if you replace
B = B + kron(r,r);
with
r = r(:);
BB = BB + r*r';
the loop runs about 5 times faster. (The actual substitution runs faster than that, but the nonchanged steps in the loop still of course have to be included).
Matt J
le 19 Déc 2020
@Adam,
It may be important to know what you plan to do with B, once you've computed it.
Réponse acceptée
Matt J
le 19 Déc 2020
Modifié(e) : Matt J
le 19 Déc 2020
m = 3; % small number in general
n = 2^20; % large power of 2 in general
A = rand(m,n);
tic;
B = zeros(m^2,m^2);
for ii = 1:size(A,2)
a = A(:,ii);
r = a*a';
B = B + kron(r,r);
end
toc;
tic;
C=reshape(A,m,1,n).*reshape(A,1,m,n);
C=reshape(C,m^2,n);
B=C*C.';
toc;
7 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur GPU Computing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!