help with error in my code
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi can someone help me understand the mistake in my code, i followed the correct syntax from https://uk.mathworks.com/help/bioinfo/ref/classperf.html
i keep getting the error
operator "==" not supported for operands of type "cvpartition"
error in line 24
test = (indices == 1)
k = 4;
n = 699; %sample lenght
rng ('default')
indices = cvpartition(n,'kfold', k);
for i = 1:k
test= (indices == i); train = ~test;
class = classify(InputVariable(test,:),InputVariable(train,:),OutputVariable(train,:));
classperf(cp,class,test);
end
cp.ErrorRate
plotconfusion(testTarget, testY)
4 commentaires
Stephen23
le 2 Jan 2021
Modifié(e) : Stephen23
le 2 Jan 2021
Original question by Dilpreet kaur retrieved from Google Cache:
help with error in my code
Hi can someone help me understand the mistake in my code, i followed the correct syntax from https://uk.mathworks.com/help/bioinfo/ref/classperf.html
i keep getting the error
operator "==" not supported for operands of type "cvpartition"
error in line 24
test = (indices == 1)
k = 4;
n = 699; %sample lenght
rng ('default')
indices = cvpartition(n,'kfold', k);
for i = 1:k
test= (indices == i); train = ~test;
class = classify(InputVariable(test,:),InputVariable(train,:),OutputVariable(train,:));
classperf(cp,class,test);
end
cp.ErrorRate
plotconfusion(testTarget, testY)
Réponse acceptée
Image Analyst
le 31 Déc 2020
I get this:
k = 4;
n = 699; %sample lenght
rng ('default')
indices = cvpartition(n,'kfold', k)
indices =
K-fold cross validation partition
NumObservations: 699
NumTestSets: 4
TrainSize: 525 524 524 524
TestSize: 174 175 175 175
You're not using indices correctly. It's an object, not a list of indices. If you want a listof indices, use randperm().
0 commentaires
Plus de réponses (1)
Walter Roberson
le 1 Jan 2021
Modifié(e) : Walter Roberson
le 2 Jan 2021
cvpartition does not return indices.
rng ('default')
nfold = 4;
cvfolds = cvpartition(699,'kfold', nfold);
cp = classperf(OutputVariable); % initializes the CP object
for i = 1:nfold
test = cvfolds.test(i);
train = cvfolds.training(i);
class = classify(InputVariable(test,:), InputVariable(train,:), OutputVariable(train,:));
classperf(cp, class, test);
end
cp.ErrorRate
0 commentaires
Voir également
Catégories
En savoir plus sur Get Started with Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!