MATLAB equivalent functions in Keras

5 vues (au cours des 30 derniers jours)
Ruhi Thomas
Ruhi Thomas le 2 Jan 2021
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits1)
lstmLayer(numHiddenUnits2)
fullyConnectedLayer(numResponses)
regressionLayer
];
What would be these layers be in Keras?
  1 commentaire
Ruhi Thomas
Ruhi Thomas le 2 Jan 2021
i know lstmLayer is tf.keras.layers.LSTM
What about the others?

Connectez-vous pour commenter.

Réponses (1)

Aneela
Aneela le 9 Sep 2024
Hi Ruhi Thomas,
If tf.keras is the way you imported Keras from TensorFlow, the above layers are equivalent to the following layers in Keras:
sequenceInputLayer(inputSize)
inputLayer= tf.keras.layers.Input(shape=(None, inputSize))
lstmLayer(numHiddenUnits1) –
lstm_layer1=tf.keras.layers.LSTM(numHiddenUnits1, return_sequences=True)(inputLayer)
lstmLayer(numHiddenUnits2) –
lstm_layer2=tf.keras.layers.LSTM(numHiddenUnits2, return_sequences=True)(inputLayer)
fullyConnectedLayer(numResponses)
dense_layer = tf.keras.Layers.Dense(numResponses)(lstm_layer2)
regressionLayer
  • In keras, there is no separate need for regression layer, instead we specify the loss function as part of the model compilation.
  • For a regression task, loss functions like “mean_squared_error,mean_absolute_error” are typically used.
model = Model(inputs=input_layer, outputs=dense_layer)
model.compile(optimizer='adam', loss='mean_squared_error')
Hope this helps!!

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by