Indefinite integrals of bessel function
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Rahul Gandhi
le 5 Jan 2021
Commenté : Rahul Gandhi
le 6 Jan 2021
I have this function that has bessel functions which has to be integrated from infinity to 0 and plot the graph between Fy and r.
Matlab returns NaN as output.

mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
syms q
r=linspace(-10*10^-3,10*10^-3,20)
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F=integral(func,inf,0)
plot(r,F)
%Edited:-Forgot to place F in plot.
4 commentaires
David Goodmanson
le 6 Jan 2021
Hi Rahul,
Compared to the expression you posted, it looks func is missing a factor of epsilon. But a much more serious issue is, what happened to the factor of 1/q?
Réponse acceptée
Walter Roberson
le 5 Jan 2021
you need ArrayValued option for integrate()
2 commentaires
Walter Roberson
le 5 Jan 2021
mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
r=linspace(-10*10^-3,10*10^-3,20)
syms q
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F = vpaintegral(func(q), q, inf, 0);
plot(r,F, 'b*-')
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Bessel functions dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
