Help fitting data to an implicit equation
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello:
I need to fit some data to the following implicit equation:
((1-y)^(1-b)/y)=exp(-kt)
t is a vector containing time values and y is a vector containing current values. for each series of data y vs t, I need to determine b and k
b has to be between 0 and 1, and k needs to be greater than 0.
I have both the optimization and the curve fitting toolboxes.
Any suggestions on what tools to use (lsqcurvefit? something else? would be very appreciated)
Thanks!
0 commentaires
Réponse acceptée
Jeff Miller
le 14 Jan 2021
Modifié(e) : Jeff Miller
le 14 Jan 2021
I would suggest using fminsearch. The error function to be minimized would be something like:
function thiserr = err(x,y,t)
b = x(1);
k = x(2);
thiserr = sum( (((1-y).^(1-b)./y) - exp(-kt))^2 );
end
You should be able to find examples of how to use fminsearch if you need more detail on how to call it. In your case y and t are "extra parameters". Look here for information on how to handle that.
3 commentaires
Jeff Miller
le 16 Jan 2021
You are welcome. That function value NaN is a bad sign. It means thiserr is NaN for all values of b and k that fminsearch has checked. You don't have any y=0 values, do you? Dividing by 0 would cause nans for all b and k.
Plus de réponses (1)
John D'Errico
le 16 Jan 2021
My thought would be the lazy solution. If your model is:
((1-y)^(1-b)/y)=exp(-kt)
then log the model. That is, we know that
(1-b)*log(1-y) + k*t = log(y)
With one more step, this reduces to
-b*log(1-y) + k*t = log(y) - log(1-y)
You can compute the parameters k and b using a simple linear regression now. Thus, if y and t are column vectors, we have:
bk = [-log(1-y),t] \ (log(y) - log(1-y));
so bk is a vector of length 2, contining the estimates for b and k respectively. If you find that b or k are estimated to be something outside of the valid region, then I would first consider if this is a reasonable model, but then you could just use lsqlin to estimate them, since lsqlin does provide bound constraints.
Voir également
Catégories
En savoir plus sur Linear Least Squares dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!