dlgradient: Error Value to differentiate must be a traced dlarray scalar.
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
qi lu
le 14 Jan 2021
Réponse apportée : Anshika Chaurasia
le 18 Jan 2021
I want to train a deep network by Automatic Differentiation. Is these any solution?
layer2 = [
imageInputLayer([9 36 1],'Normalization','none','Name','input1-fcc')
convolution2dLayer([7,7],64,'Name','conv1-fcc')
batchNormalizationLayer('Name','bn1-fcc')
reluLayer('Name','relu1-fcc')
globalAveragePooling2dLayer('Name','pool5-fcc')
fullyConnectedLayer(1,'Name','fc1')];
lgraph = layerGraph(layer2);
dlnet = dlnetwork(lgraph);
% Input
a = rand(9,36,1,10);
a = dlarray(a,'SSCB');
a_pre = forward(dlnet,a);
% output
b = rand(1,10);
loss = mse(a_pre,b);
gradients = dlgradient(loss,dlnet.Learnables);

0 commentaires
Réponse acceptée
Anshika Chaurasia
le 18 Jan 2021
Hi Qi Lu,
You can try following code to compute gradients that will resolve your error:
layer2 = [
imageInputLayer([9 36 1],'Normalization','none','Name','input1-fcc')
convolution2dLayer([7,7],64,'Name','conv1-fcc')
batchNormalizationLayer('Name','bn1-fcc')
reluLayer('Name','relu1-fcc')
globalAveragePooling2dLayer('Name','pool5-fcc')
fullyConnectedLayer(1,'Name','fc1')];
lgraph = layerGraph(layer2);
dlnet = dlnetwork(lgraph);
% Input
a = rand(9,36,1,10);
a = dlarray(a,'SSCB');
[loss,gradients] = dlfeval(@compute_gradient,dlnet,a);
function [loss,gradients]=compute_gradient(dlnet,a)
a_pre = forward(dlnet,a);
% output
b = rand(1,10);
loss = mse(a_pre,b);
gradients = dlgradient(dlarray(loss),dlnet.Learnables);%automatic gradient
end
Refer to the following documentation for more information on Automatic Differentiation.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!