trainNetwork: loss output vs. manual calculation
    5 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
Dear Matlab community,
I have recently become a bit puzzled when it comes to the trainNetwork function, specifically the diagnostis printed.
I get the following values during the last epoch:
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     RMSE     |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|    1000 |      252750 |       12:58:24 |         0.04 |         0.17 |       0.0007 |       0.0136 |      6.2500e-05 |
|    1000 |      252800 |       12:58:34 |         0.03 |         0.16 |       0.0006 |       0.0120 |      6.2500e-05 |
|    1000 |      252850 |       12:58:43 |         0.04 |         0.16 |       0.0007 |       0.0133 |      6.2500e-05 |
|    1000 |      252900 |       12:58:52 |         0.03 |         0.17 |       0.0004 |       0.0143 |      6.2500e-05 |
|    1000 |      252950 |       12:59:01 |         0.03 |         0.16 |       0.0005 |       0.0121 |      6.2500e-05 |
|    1000 |      253000 |       12:59:11 |         0.03 |         0.17 |       0.0004 |       0.0150 |      6.2500e-05 |
One observes that the training loss is much lower than the validation loss, sign of overtraining but not the issue here.
If I now use the trained network, predict the responses and calculate the loss manually I receive:
training: 0.137 / validation: 0.149
This is systematic and leads me to wonder if the "Mini-batch Loss" is not the MSE of the training data.
0 commentaires
Réponses (0)
Voir également
Catégories
				En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
