Evaluating Gradient Matrix Symbolically

3 vues (au cours des 30 derniers jours)
Kyle
Kyle le 20 Jan 2021
Réponse apportée : Kyle le 21 Jan 2021
Given some cartesian coordinates, I wish to define an Euclidean distance matrix (D), and determine the corrosponding gradient matrix wrt all coordinates.
The following code allows me to define a symbolic matrix B with dimensions 9x9, the analytical expressions for the gradient matrix are as expected, but I
am struggling to evaluate the analytical expressions numerically.
Q = dlmread('geom.xyz')
[natom, nc] = size(Q); % Q = some molecular geometry in cartesian coordinates:
%0 0 -0.5053
%0 1.0392 0.0947
%0 -1.0392 0.0947
B = sym(zeros(natom^2, 3*natom)); % init symbolic B matrix (derivative of flattened distance mat. wrt cartesian coordinates)
BB = zeros(natom^2, 3*natom); % Numerical version of B to store evaluated gradients
[Nsq, tN] = size(B);
for i=1:natom
for j=i+1:natom
D(i,j) = norm(Q(i,:)-Q(j,:)); % distance matrix
D(j,i) = 0;
end
end
Nabla = func() % some function to generate symb expressions
% Nabla has a value of: [ x1, y1, z1, x2, y2, z2, x3, y3, z3]
R = func() % function to gen symb expressions again
% R is a symb expression for cartesian coordinates, with value: [ x1, y1, z1]
%[ x2, y2, z2]
%[ x3, y3, z3]
count = 0;
for i=1:natom
for j=1:natom
if i == j
Dij = 0; % avoid dividing by 0
else
Dij = 1/norm(R(i,:)-R(j,:)); % symbolic expression for 1/distance generated from R
end
count = count + 1;
B(count,:) = gradient(Dij,Nabla); % take gradient for each element of distance matrix, each element gives 9 derivatives when taken wrt to all cartesian coords in nabla.
for k=1:tN
BB(count, k) = subs(B(count,k),Dij,1/(norm(Q(i,:)-Q(j,:)))); % gradient matrix of evaluated analytical expressions with dimension natom^2, 3*natom
% each row corrosponds to one Euclidean distance of 2 atoms - i.e. elements of D(:)
end
end
end
Taking row B(2,:) (corresponding to gradient of D(1,2), where D(1,2) = 1/(abs(x1 - x2)^2 + abs(y1 - y2)^2 + abs(z1 - z2)^2)^(1/2)), the analytical expressions are correctly defined as,
>> B(2,:)'
ans =
-(abs(x1 - x2)*conj(sign(x1 - x2)))/(abs(x1 - x2)^2 + abs(y1 - y2)^2 + abs(z1 - z2)^2)^(3/2)
-(abs(y1 - y2)*conj(sign(y1 - y2)))/(abs(x1 - x2)^2 + abs(y1 - y2)^2 + abs(z1 - z2)^2)^(3/2)
-(abs(z1 - z2)*conj(sign(z1 - z2)))/(abs(x1 - x2)^2 + abs(y1 - y2)^2 + abs(z1 - z2)^2)^(3/2)
(abs(x1 - x2)*conj(sign(x1 - x2)))/(abs(x1 - x2)^2 + abs(y1 - y2)^2 + abs(z1 - z2)^2)^(3/2)
(abs(y1 - y2)*conj(sign(y1 - y2)))/(abs(x1 - x2)^2 + abs(y1 - y2)^2 + abs(z1 - z2)^2)^(3/2)
(abs(z1 - z2)*conj(sign(z1 - z2)))/(abs(x1 - x2)^2 + abs(y1 - y2)^2 + abs(z1 - z2)^2)^(3/2)
0
0
0
But when evaluated numerically it throws the following error trying to fill matrix BB:
The following error occurred converting from sym to double: Unable to convert expression into double array.
When inspecting the result outside of the loop, the expression I get is,
>> subs(B(2,:),Dij,1/(norm(Q(1,:)-Q(2,:))))'
ans =
-(422888205284047902665468512568529212604620021371*abs(x1 - x2)*conj(sign(x1 - x2)))/730750818665451459101842416358141509827966271488
-(422888205284047902665468512568529212604620021371*abs(y1 - y2)*conj(sign(y1 - y2)))/730750818665451459101842416358141509827966271488
-(422888205284047902665468512568529212604620021371*abs(z1 - z2)*conj(sign(z1 - z2)))/730750818665451459101842416358141509827966271488
(422888205284047902665468512568529212604620021371*abs(x1 - x2)*conj(sign(x1 - x2)))/730750818665451459101842416358141509827966271488
(422888205284047902665468512568529212604620021371*abs(y1 - y2)*conj(sign(y1 - y2)))/730750818665451459101842416358141509827966271488
(422888205284047902665468512568529212604620021371*abs(z1 - z2)*conj(sign(z1 - z2)))/730750818665451459101842416358141509827966271488
0
0
0
Why can I not seem to substitute the numerator of derivates too? How do I substitute these values correctly? These numerical substitution seems off and I can not figure out how to sub this correctly. If anyone has any insight that would be great. Thanks!

Réponse acceptée

Kyle
Kyle le 21 Jan 2021
Solved - the numerical substitution must be split into two steps, so that instead of,
for k=1:tN
BB(count, k) = subs(B(count,k),Dij,1/(norm(Q(i,:)-Q(j,:))));
end
we have,
ax = 0;
for k=1:tN
if mod(ax,3) == 0
ax = 0;
end
ax = ax + 1;
b = subs(B(count,k),Dij,1/(norm(Q(i,:)-Q(j,:)))); % evaluate symb matrix B and fill BB
c = subs(b,(R(i,ax)-R(j,ax)),(Q(i,ax)-Q(j,ax)));
BB(count,k) = c;
end
once the values of 1/Euclidean distance have been substituted, one can sub for the values of (abs(x1 - x2)*conj(sign(x1 - x2))). The index for the axis of each vector R must be reset every three iterations in order to loop through the values of x,y and z three times for each of the nine derivatives in the row of B.

Plus de réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by