Effacer les filtres
Effacer les filtres

how to plot the motor chamber pressure and the vacuum thrust as a function of both time and web assuming quasi-steady state (equilibrium)

8 vues (au cours des 30 derniers jours)
I have computed the equilibrium pressure assuming a quasi steady state condition: using the following eq attached to this question and below is my code. How do I plot Pc_eq as a function of time?
clear all
%% Step 1
% ========================================================================= %
% Basing on the motor and propellant data indicated in Table 1 and on the
% burning surface evolution shown in Figs. 5 and 6 and assuming a constant
% chambre temperature profile compute the following curves without taking
% into account the non-ideal parameters.
%% Step 1.1
%Find: The motor chamber pressure and the vaccume thrust as a
% function of both time and web assuming quasi-steady state (equilibrium)
% User inputs - First stage P80 SRM
% ========================================================================= %
mp = 88000; % Propellant Mass [kg]
ms = 7330; % Structural mass [kg]
l = 10.6; % length [m]
d = 3.0; % Diameter [m]
f = 3015; % Max thrust(vaccum) [kN]
bt = 110; % Buring time [sec]
isp = 280; % Specifi Impulse (vaccuum) [sec]
% User inputs - Propellant Ballistic Properties
% ========================================================================= %
a = 1.847e-05; % Temperature coefficient @ 300 K [m/s * Pae-0.4]
n = 0.4; % Combustion index
tau = 0.0015; % Temperature sensitivity [k^-1]
rho = 1790; % Density [kg/m^3]
% User inputs - Propellant thermochemocal properties
% ========================================================================= %
T_F = 3550; % Flame temperature [K]
M = 29; % Molecular mass [kg/kmole]
gamma = 1.13; % Specific heat ratio
% User inputs - Motor geometrical properties
% ========================================================================= %
d_throat = 0.496; % Throat diameter [m]
e = 16; % expansion ratio
v_c = 8.6; % Initial chamber volume [m^3]
v_frac = 0.85; % volumetric loading fraction (V_c/(V_c+V_p)
% constants
% ========================================================================= %
r = 8314.5 % gas constant [J/kmol)
% Calculations
% Find: The motor chamber pressure and the vaccum thrust as a
% ========================================================================= %
a_t = pi* (d_throat/2)^2; % Thrat area [m^2]
m_dot = mp/bt; % mass flow rate [kg/s]
s_b = 48; % burning surface area - pulled from the Sb vs Y plot [m^2]
cap_gamma = sqrt (gamma * (2/(gamma + 1))^((gamma+1)/(gamma-1))); % capital gamma
c_star = (1/cap_gamma)*sqrt((r*T_F)/M);
K = s_b/a_t; % Klemmung
Pc_eq = (a *rho*c_star*K)^(1/(1-n));
  4 commentaires
Christina Reid
Christina Reid le 24 Jan 2021
Hi again Mishca,
I actually added an attachment which explains PC_eq dependecy. The variable,y, being the web thickness = 1.09.
Poornadithya Chandramukhi
Poornadithya Chandramukhi le 4 Mai 2024 à 4:30
What was the equation you used for F_vac? I am also doing a similar project and i am a little confused about a few things.... It would really help

Connectez-vous pour commenter.

Réponses (1)

Gaurav Garg
Gaurav Garg le 23 Fév 2021
Hi Christina,
The variable Pc_eq is a scalar value, in your case. You need to have a vector in order to plot it.
Moreover, your equation doesn't seem to have any time dependency.
So, I would suggest you to rewrite the code and give the variables you want to plot, some dependency over time and then use plot funciton.

Catégories

En savoir plus sur Oil, Gas & Petrochemical dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by