solution to differential equations system looks strange. What is wrong with my code?
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
susman
le 29 Jan 2021
Commenté : Walter Roberson
le 30 Jan 2021
I am writing a code to solve the differential equations. I have written the following code but my solution looks wierd. First, I get long digits numbers, which I do not get if I solve the system by hand. secondly, I get constants like C1 and C2 etc... Though I have defined the values of all parameters of functions. Please tell me what is wrong in my code:
%defined parameters
hf12 = exp(-21.6079+0.0099).*exp(-0.0134.*t)
hf13 = 0
hf14 = 0
hf15 = exp(-9.65573+0.01844+0.0821).*exp(0.02246*t)
hf11 = -(hf12+hf15)
hf21 = 0
hf23 = exp(-1.666-0.1116).*exp(-0.0025.*t)
hf24 = exp(-8.96236+0.07691).*exp(0.00978.*t)
hf25 = exp(-9.65573+0.08218).*exp(0.02246.*t)
hf22 = -(hf23+hf24+hf25)
hf31 = 0
hf32 = exp(-21.6079+0.0676+0.0099).*exp(-0.0134.*t)
hf34 = 0
hf35 = exp(-9.65573-(0.11853)+0.08218).*exp(0.02246.*t)
hf33 = -(hf32+hf35)
hf41 = 0
hf42 = exp(-21.609-0.4176+0.0099).*exp(-0.0134.*t)
hf43 = 0
hf45 = exp(-9.65573-0.00415+0.08218).*exp(0.02246.*t)
hf44 = -(hf42+hf45)
%% solution
syms p11(t) p22(t) p33(t) p44(t) p55(t) p12(t) p13(t) p14(t) p15(t) p21(t) p23(t) p24(t) p25(t) ...
p31(t) p32(t) p34(t) p35(t) p41(t) p42(t) p43(t) p45(t) p51(t) p52(t) p53(t) p54(t) p55(t)
ode = [diff(p11,t) == exp(hf12+hf15),...
diff(p22,t) == exp(hf23+hf24+hf25),...
diff(p33,t) == exp(+hf32+hf35),...
diff(p44,t) == exp(+hf42+hf45),...
diff(p12,t) == p11.*hf12+p12*hf22,...
diff(p13,t) == 0,...
diff(p14,t) == 0,...
diff(p15,t) == p11.*hf15+p12*hf25,...
diff(p21,t) == 0,...
diff(p23,t) == p22.*hf23+p23*hf33,...
diff(p24,t) == p22.*hf24+p24*hf44,...
diff(p25,t) == p22.*hf25+p23*hf35+p24.*hf45,...
diff(p31,t) == 0,...
diff(p32,t) == p32.*hf22+p33*hf32,...
diff(p34,t) == 0,...
diff(p35,t) == p32.*hf25+p33*hf35,...
diff(p41,t) == 0,...
diff(p42,t) == p42.*hf22+p44*hf42,...
diff(p43,t) == 0,...
diff(p45,t) == p42.*hf25+p44*hf45,...
diff(p51,t) == 0,...
diff(p52,t) == 0,...
diff(p53,t) == 0,...
diff(p54,t) == 0,...
diff(p55,t) == 1]
cond1 = p11(t)+p12(t)+p13(t)+p14(t)+p15(t) == 1;
cond2 = p21(t)+p22(t)+p23(t)+p24(t)+p25(t) == 1;
cond3 = p31(t)+p32(t)+p33(t)+p34(t)+p35(t) == 1;
cond4 = p41(t)+p42(t)+p43(t)+p44(t)+p45(t) == 1;
cond5 = p51(t)+p52(t)+p53(t)+p54(t)+p55(t) == 1;
S = dsolve(ode)
These equations are solutions to probabilities therefore, I am expecting the answers between 0 and 1.
Réponse acceptée
Walter Roberson
le 29 Jan 2021
Modifié(e) : Walter Roberson
le 29 Jan 2021
Q = @(v) sym(v)
syms t real
%defined parameters
hf12 = exp(Q(-21.6079)+Q(0.0099)).*exp(Q(-0.0134).*t)
hf13 = 0
hf14 = 0
hf15 = exp(Q(-9.65573)+Q(0.01844)+Q(0.0821)).*exp(Q(0.02246)*t)
hf11 = -(hf12+hf15)
hf21 = 0
hf23 = exp(Q(-1.666)-Q(0.1116)).*exp(Q(-0.0025).*t)
hf24 = exp(Q(-8.96236)+Q(0.07691)).*exp(Q(0.00978).*t)
hf25 = exp(Q(-9.65573)+Q(0.08218)).*exp(Q(0.02246).*t)
hf22 = -(hf23+hf24+hf25)
hf31 = 0
hf32 = exp(Q(-21.6079)+Q(0.0676)+Q(0.0099)).*exp(Q(-0.0134).*t)
hf34 = 0
hf35 = exp(Q(-9.65573)-Q(0.11853)+Q(0.08218)).*exp(Q(0.02246).*t)
hf33 = -(hf32+hf35)
hf41 = 0
hf42 = exp(Q(-21.609)-Q(0.4176)+Q(0.0099)).*exp(Q(-0.0134).*t)
hf43 = 0
hf45 = exp(Q(-9.65573)-Q(0.00415)+Q(0.08218)).*exp(Q(0.02246).*t)
hf44 = -(hf42+hf45)
%% solution
syms p11(t) p22(t) p33(t) p44(t) p55(t) p12(t) p13(t) p14(t) p15(t) p21(t) p23(t) p24(t) p25(t) ...
p31(t) p32(t) p34(t) p35(t) p41(t) p42(t) p43(t) p45(t) p51(t) p52(t) p53(t) p54(t) p55(t)
ode = [diff(p11,t) == exp(hf12+hf15),...
diff(p22,t) == exp(hf23+hf24+hf25),...
diff(p33,t) == exp(+hf32+hf35),...
diff(p44,t) == exp(+hf42+hf45),...
diff(p12,t) == p11.*hf12+p12*hf22,...
diff(p13,t) == 0,...
diff(p14,t) == 0,...
diff(p15,t) == p11.*hf15+p12*hf25,...
diff(p21,t) == 0,...
diff(p23,t) == p22.*hf23+p23*hf33,...
diff(p24,t) == p22.*hf24+p24*hf44,...
diff(p25,t) == p22.*hf25+p23*hf35+p24.*hf45,...
diff(p31,t) == 0,...
diff(p32,t) == p32.*hf22+p33*hf32,...
diff(p34,t) == 0,...
diff(p35,t) == p32.*hf25+p33*hf35,...
diff(p41,t) == 0,...
diff(p42,t) == p42.*hf22+p44*hf42,...
diff(p43,t) == 0,...
diff(p45,t) == p42.*hf25+p44*hf45,...
diff(p51,t) == 0,...
diff(p52,t) == 0,...
diff(p53,t) == 0,...
diff(p54,t) == 0,...
diff(p55,t) == 1].';
ode = ode(t);
cond1 = p11(t)+p12(t)+p13(t)+p14(t)+p15(t) == 1;
cond2 = p21(t)+p22(t)+p23(t)+p24(t)+p25(t) == 1;
cond3 = p31(t)+p32(t)+p33(t)+p34(t)+p35(t) == 1;
cond4 = p41(t)+p42(t)+p43(t)+p44(t)+p45(t) == 1;
cond5 = p51(t)+p52(t)+p53(t)+p54(t)+p55(t) == 1;
S = dsolve(ode)
S.p11
vpa(S.p11, 5)
Sc = struct2cell(S);
Sv = simplify(vertcat(Sc{:}), 'steps', 10)
symvar(Sv)
conds = [cond1; cond2; cond3; cond4; cond5]
temp = subs(conds, S);
%do not simplify() the equations directly, as it will test to see
%whether the left side equals the right side and will say "symfalse"
conds_subs = simplify(lhs(temp)-rhs(temp), 'steps', 10)
symvar(conds_subs)
5 commentaires
Walter Roberson
le 30 Jan 2021
Your first four p5* have derivative 0 so they must be constant. Your p55 derivative is 1, so the function must be 1*t plus a constant. The five together total 1. But the five added are a series of constants plus t. That cannot be constant unless t is restricted to 0. Therefore your equations are wrong.
Walter Roberson
le 30 Jan 2021
Notice that you have exp() of terms that are already exp(). See sigma 19 in the above "where" list to see it come in as a factor. You can be fairly sure that you will not be able to find a closed form solution for integrals or ode that include such terms.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Equation Solving dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!