how to create a symbolic derivative of f(r(x,y),theta(x,y)) and evaluate it
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello Community,
i have some more or less complicated funtions, e.g. a simple one:
f(r,theta) = r*(pi*cos(theta)+2*sin(theta));
x = x0 +r*cos(theta);
y = y0 +r*cos(theta);
and I need the symbolic derivative of f with respect to x any y: d f(r(x,y),theta(x,y)) / dx = ....
my code look like this:
syms f f1 f2 r theta x x0 y0 y pi
f = r*(pi*cos(theta)+2*sin(theta));
f1 = x == x0 + r*cos(theta);
f2 = y == y0 + r*sin(theta);
dr_dx = diff(solve(f1,r),x)
dtheta_x = diff(solve(f1,theta),x)
dr_dy = diff(solve(f2,r),y)
dtheta_y = diff(solve(f2,theta),y)
df_r = diff(f,r)
df_theta = diff(f,theta)
but how i could create the desired derivative..
0 commentaires
Réponse acceptée
David Durschlag
le 29 Jan 2021
Let's break down the operations required:
First, solve for theta and r in terms of x and y:
theta_r = solve([x == x0 + r*cos(theta), y == y0 + r*sin(theta)], [theta, r]);
theta_r will be a struct with possible substitutions for theta and r as its properties.
Second, choose the substitutions (in this case, the first ones):
theta_r_subs = [theta_r.theta(1), theta_r.r(1)];
Third, perform the substitution:
fxy = subs(f, [theta, r], theta_r_subs);
Fourth, differentiate:
df_x = diff(fxy, x);
df_y = diff(fxy, y);
Further solutions can be obtained by choosing different substitutions.
--David
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!