Symbolic Math shows weird behavior - not seen in Wolfram or Octave

2 vues (au cours des 30 derniers jours)
Stiv Nikolov
Stiv Nikolov le 5 Fév 2021
Commenté : Stiv Nikolov le 5 Fév 2021
Hello everyone!
I was trying to calculate a real eigenvector of a matrix containing trigonometric functions. The only real eigenvalue is 0. Here is my solution by hand using a vector product for :
The cancels out with the cosine into .
For the code I replaced the function with so terms could cancel out as by hand, since they did not with .
Here is the code:
%pkg load symbolic % only for octave
syms x
A = sym([1 -2*cos(x) 0; -sin(x)/cos(x)*sin(x) 1 cos(x); 1 -2*sin(x)/cos(x)*sin(x) 2])
[V,D] = eig(A)
V(:,1)*(1-2*sin(x)^2)
Output of Octave 6.1.0 (with SymPy 1.5.1 managing symbolic math):
Output of Matlab R2020b:
What am I missing / doing wrong?

Réponse acceptée

Paul
Paul le 5 Fév 2021
Modifié(e) : Paul le 5 Fév 2021
It looks like the expected solution can be obtained with some work. Maybe someone else can get there faster.
>> syms x real
>> A = sym([1 -2*cos(x) 0; -sin(x)/cos(x)*sin(x) 1 cos(x); 1 -2*sin(x)/cos(x)*sin(x) 2])
A =
[ 1, -2*cos(x), 0]
[ -sin(x)^2/cos(x), 1, cos(x)]
[ 1, -(2*sin(x)^2)/cos(x), 2]
>> [V,D]=eig(A)
V =
[ ((cos(x)^4 + 3*cos(x)^2*sin(x)^2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3))/(cos(x)^4 - 2*sin(x)^6) - (2*(cos(x)^4 + cos(x)^2*sin(x)^4 + cos(x)^2*sin(x)^2))/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^2*sin(x)^2*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3)^2)/(cos(x)^4 - 2*sin(x)^6), - (2*(cos(x)^4 + cos(x)^2*sin(x)^4 + cos(x)^2*sin(x)^2))/(cos(x)^4 - 2*sin(x)^6) - ((cos(x)^4 + 3*cos(x)^2*sin(x)^2)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^2*sin(x)^2*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(cos(x)^4 - 2*sin(x)^6), - (2*(cos(x)^4 + cos(x)^2*sin(x)^4 + cos(x)^2*sin(x)^2))/(cos(x)^4 - 2*sin(x)^6) - ((cos(x)^4 + 3*cos(x)^2*sin(x)^2)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^2*sin(x)^2*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(cos(x)^4 - 2*sin(x)^6)]
[ ((3*cos(x)^3 + 2*cos(x)*sin(x)^4)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3))/(2*(cos(x)^4 - 2*sin(x)^6)) - (cos(x)^3 + 2*cos(x)*sin(x)^4 + cos(x)^3*sin(x)^2)/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^3*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3)^2)/(2*(cos(x)^4 - 2*sin(x)^6)), - (cos(x)^3 + 2*cos(x)*sin(x)^4 + cos(x)^3*sin(x)^2)/(cos(x)^4 - 2*sin(x)^6) - ((3*cos(x)^3 + 2*cos(x)*sin(x)^4)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(2*(cos(x)^4 - 2*sin(x)^6)) - (cos(x)^3*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(2*(cos(x)^4 - 2*sin(x)^6)), - (cos(x)^3 + 2*cos(x)*sin(x)^4 + cos(x)^3*sin(x)^2)/(cos(x)^4 - 2*sin(x)^6) - ((3*cos(x)^3 + 2*cos(x)*sin(x)^4)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(2*(cos(x)^4 - 2*sin(x)^6)) - (cos(x)^3*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(2*(cos(x)^4 - 2*sin(x)^6))]
[ 1, 1, 1]
D =
[ 1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3, 0, 0]
[ 0, 4/3 - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)), 0]
[ 0, 0, 4/3 - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))]
>> D=simplify(diag(D),300) % unclear why D(1) doesn't simplify to 2 - 1i
D =
2 - (2*(-1)^(1/3)*(2*3^(1/2) - 3)*(- 15*3^(1/2) - 26)^(1/3))/3 - 3^(1/2)/3
0
2 + 1i
>> V2=V(:,2); % pick the eigenvector associated with lamda = 0
>> simplify(imag(V2),100) % verify the imaginary part is 0
ans =
0
0
0
>> V2=real(V2); % grab the real part
>> V2=simplify(V2,100)
V2 =
- 1/cos(2*x) - 1
-cos(x)/(2*cos(x)^2 - 1)
1
>> simplify(V2*(1-2*sin(x)^2),100)
ans =
-2*cos(x)^2
-cos(x)
cos(2*x)
  1 commentaire
Stiv Nikolov
Stiv Nikolov le 5 Fév 2021
Thanks!
I just could not figure out why it behaved this way and did not simplify in the first place. The z component of the vector was of the same form, which confused me even more as it seemed to work in at least some place.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by