Kronig-Penney Model

23 vues (au cours des 30 derniers jours)
Mou Mahmood
Mou Mahmood le 9 Fév 2021
Commenté : Walter Roberson le 27 Sep 2023
Can anyone provide me the MATLAB code for Kronig-Penney model to draw band structure for 1-D periodic potential well structure?
  2 commentaires
Adam Danz
Adam Danz le 9 Fév 2021
You'll likely have more success searching for it in an internet search engine.
Sheikh Munim Hussain Shakib
Have you got the code?

Connectez-vous pour commenter.

Réponses (2)

RAVI SHANKAR KUMAR
RAVI SHANKAR KUMAR le 30 Août 2023
Modifié(e) : Walter Roberson le 27 Sep 2023
close all;
set(0,'defaultlinelinewidth',1.5)
%Constants
h = 6.626e-34;
c = 2.998e8;
h_cut = 1.055e-34;
m0 = 9.109e-31;
e_const = 1.602e-19;
%User inputs
U_eV=1;
a=3e-10;
b=4e-10;
%Derived values
U=U_eV*e_const;
ap0 = sqrt(2*m0*U/(h_cut^2));
f=@(g) (1-2*g)./(2*sqrt(g.*(g-1))).*sin(a*ap0*sqrt(g))...
.*sin(b*ap0*sqrt(g-1))...
+cos(a*ap0*sqrt(g)).*cos(b*ap0*sqrt(g-1));
g=linspace(.1, 10, 1e5);
fg=f(g);
g(isnan(g))=1;
plot(g,fg)
hold on
plot([g(1) g(end)], [1, 1], 'r--')
plot([g(1) g(end)], [-1, -1], 'g--')
ylim([min(fg)-.5, 3])
xlabel('\zeta (=E/U_o) \rightarrow');
ylabel('f(\zeta) (=RHS) \rightarrow');
title(['Plot of the RHS of the equation f(\zeta) vs. \zeta; '...
'for U=' num2str(U_eV), ' eV; a=' num2str(a*1e10) char(197)...
' and b=' num2str(b*1e10) char(197)])
grid on
flg=abs(fg)<=1;
figure
h1=gca;
hold on
xlabel('Crystal momentum, k(radian/meter) \rightarrow');
ylabel('Energy, E (eV) \rightarrow');
title(['Reduced zone representation of the E-k relationship '...
'for U=' num2str(U_eV), ' eV; a=' num2str(a*1e10) char(197)...
' and b=' num2str(b*1e10) char(197)])
xticks([-pi -pi/2 0 pi/2 pi]/(a+b));
xticklabels({'-\pi/(a+b)','-\pi/(2(a+b))','0','\pi/(2(a+b))','\pi/(a+b)'})
grid on
figure
h2=gca;
hold on
xlabel('Crystal momentum, k(radian/meter) \rightarrow');
ylabel('Energy, E (eV) \rightarrow');
title(['Extended zone representation of the E-k relationship '...
'for U=' num2str(U_eV), ' eV; a=' num2str(a*1e10) char(197)...
' and b=' num2str(b*1e10) char(197)])
xticks([-6*pi -5*pi -4*pi -3*pi -2*pi -pi 0 pi 2*pi 3*pi 4*pi 5*pi 6*pi]/(a+b))
xticklabels({'-6\pi/(a+b)','-5\pi/(a+b)','-4\pi/(a+b)' ...
'-3\pi/(a+b)','-2\pi/(a+b)','-\pi/(a+b)','0','\pi/(a+b)',...
'2\pi/(a+b)','3\pi/(a+b)'...
'4\pi/(a+b)','5\pi/(a+b)','6\pi/(a+b)'})
xtickangle(45)
grid on
prd=pi/(a+b);
plst=1;
k=1;
while ~isempty(flg) && k<6
pos=find(flg);
if isempty(pos)
break
end
pfst=plst+pos(1)-1;
flg=flg(pos(1):end);
pos=find(~flg);
if isempty(pos)
break
end
plst=pfst+pos(1)-1;
flg=flg(pos(1):end);
kv=acos(fg(pfst:plst-1))/(a+b);
ev=g(pfst:plst-1)*U_eV;
if mod(k,2)
plot(h1,[-fliplr(kv), kv], [fliplr(ev),ev], 'b');
if k==1
plot(h2,[-fliplr(kv), kv], [fliplr(ev),ev], 'b');
else
plot(h2,kv+prd*(k-1), ev, 'b');
plot(h2,-fliplr(kv)-prd*(k-1), fliplr(ev), 'b');
end
else
plot(h1, [kv, -fliplr(kv)], [ev,fliplr(ev)], 'b');
plot(h2,kv-prd*k, ev, 'b');
plot(h2,-fliplr(kv)+prd*k, fliplr(ev), 'b')
end
k=k+1;
end

Krishna Kumar
Krishna Kumar le 26 Sep 2023
Modifié(e) : Walter Roberson le 27 Sep 2023
close all;
set(0,'defaultlinelinewidth',1.5)
%Constants
h = 6.626e-34;
c = 2.998e8;
h_cut = 1.055e-34;
m0 = 9.109e-31;
e_const = 1.602e-19;
%User inputs
U_eV=1;
a=3e-10;
b=4e-10;
%Derived values
U=U_eV*e_const;
ap0 = sqrt(2*m0*U/(h_cut^2));
f=@(g) (1-2*g)./(2*sqrt(g.*(g-1))).*sin(a*ap0*sqrt(g))...
.*sin(b*ap0*sqrt(g-1))...
+cos(a*ap0*sqrt(g)).*cos(b*ap0*sqrt(g-1));
g=linspace(.1, 10, 1e5);
fg=f(g);
g(isnan(g))=1;
plot(g,fg)
hold on
plot([g(1) g(end)], [1, 1], 'r--')
plot([g(1) g(end)], [-1, -1], 'g--')
ylim([min(fg)-.5, 3])
xlabel('\zeta (=E/U_o) \rightarrow');
ylabel('f(\zeta) (=RHS) \rightarrow');
title(['Plot of the RHS of the equation f(\zeta) vs. \zeta; '...
'for U=' num2str(U_eV), ' eV; a=' num2str(a*1e10) char(197)...
' and b=' num2str(b*1e10) char(197)])
grid on
flg=abs(fg)<=1;
figure
h1=gca;
hold on
xlabel('Crystal momentum, k(radian/meter) \rightarrow');
ylabel('Energy, E (eV) \rightarrow');
title(['Reduced zone representation of the E-k relationship '...
'for U=' num2str(U_eV), ' eV; a=' num2str(a*1e10) char(197)...
' and b=' num2str(b*1e10) char(197)])
xticks([-pi -pi/2 0 pi/2 pi]/(a+b));
xticklabels({'-\pi/(a+b)','-\pi/(2(a+b))','0','\pi/(2(a+b))','\pi/(a+b)'})
grid on
figure
h2=gca;
hold on
xlabel('Crystal momentum, k(radian/meter) \rightarrow');
ylabel('Energy, E (eV) \rightarrow');
title(['Extended zone representation of the E-k relationship '...
'for U=' num2str(U_eV), ' eV; a=' num2str(a*1e10) char(197)...
' and b=' num2str(b*1e10) char(197)])
xticks([-6*pi -5*pi -4*pi -3*pi -2*pi -pi 0 pi 2*pi 3*pi 4*pi 5*pi 6*pi]/(a+b))
xticklabels({'-6\pi/(a+b)','-5\pi/(a+b)','-4\pi/(a+b)' ...
'-3\pi/(a+b)','-2\pi/(a+b)','-\pi/(a+b)','0','\pi/(a+b)',...
'2\pi/(a+b)','3\pi/(a+b)'...
'4\pi/(a+b)','5\pi/(a+b)','6\pi/(a+b)'})
xtickangle(45)
grid on
prd=pi/(a+b);
plst=1;
k=1;
while ~isempty(flg) && k<6
pos=find(flg);
if isempty(pos)
break
end
pfst=plst+pos(1)-1;
flg=flg(pos(1):end);
pos=find(~flg);
if isempty(pos)
break
end
plst=pfst+pos(1)-1;
flg=flg(pos(1):end);
kv=acos(fg(pfst:plst-1))/(a+b);
ev=g(pfst:plst-1)*U_eV;
if mod(k,2)
plot(h1,[-fliplr(kv), kv], [fliplr(ev),ev], 'b');
if k==1
plot(h2,[-fliplr(kv), kv], [fliplr(ev),ev], 'b');
else
plot(h2,kv+prd*(k-1), ev, 'b');
plot(h2,-fliplr(kv)-prd*(k-1), fliplr(ev), 'b');
end
else
plot(h1, [kv, -fliplr(kv)], [ev,fliplr(ev)], 'b');
plot(h2,kv-prd*k, ev, 'b');
plot(h2,-fliplr(kv)+prd*k, fliplr(ev), 'b')
end
k=k+1;
end
  1 commentaire
Walter Roberson
Walter Roberson le 27 Sep 2023
What is the difference between this and the Answer given by @RAVI SHANKAR KUMAR ?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Language Fundamentals dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by