custom regression (multiple output)
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I am working on a custom regression neural network.
Inputs size=2 and Output size=6 // Number of Data =25001
However, after a certain iteration, it was confirmed that all Data(25001) outputs are the same.
x axis=Target // y axis=output
Initially, the output is different, but it seems that the output is the same after a while.
My code is here.
--------------------------------------------------------------------------------------------
clear,clc,close all
Data=readmatrix('sim_linear.xlsx');
Y_at=Data(:,2);
Y_ft=Data(:,3);
F_at=Data(:,4);
F_ft=Data(:,5);
P_cot=Data(:,6);
T_cot=Data(:,7);
T_bt=Data(:,8);
F_et=Data(:,9);
T_et=Data(:,10);
PW_t=Data(:,11);
idx=randperm(numel(Y_at));
Y_at=Y_at(idx);
Y_ft=Y_ft(idx);
F_at=F_at(idx);
F_ft=F_ft(idx);
P_cot=P_cot(idx);
T_cot=T_cot(idx);
T_bt=T_bt(idx);
F_et=F_et(idx);
T_et=T_et(idx);
PW_t=PW_t(idx);
Input=cat(2,Y_at,Y_ft);
Output=cat(2,F_ft,T_cot,T_bt,F_et,T_et,PW_t);
Inputs=transpose(Input);
Outputs=transpose(Output);
layers = [
featureInputLayer(2,'Name','in')
fullyConnectedLayer(64,'Name','fc1')
tanhLayer('Name','tanh1')
fullyConnectedLayer(32,'Name','fc2')
tanhLayer('Name','tanh2')
fullyConnectedLayer(16,'Name','fc3')
tanhLayer('Name','tanh3')
fullyConnectedLayer(8,'Name','fc4')
tanhLayer('Name','tanh4')
fullyConnectedLayer(6,'Name','fc5')
];
lgraph=layerGraph(layers);
dlnet=dlnetwork(lgraph);
iteration = 1;
averageGrad = [];
averageSqGrad = [];
learnRate = 0.005;
gradDecay = 0.75;
sqGradDecay = 0.95;
output=[];
dlX = dlarray(Inputs,'CB');
for it=1:500
iteration = iteration + 1;
[out,loss,NNgrad]=dlfeval(@gradients,dlnet,dlX,Outputs);
[dlnet.Learnables,averageGrad,averageSqGrad] = adamupdate(dlnet.Learnables,NNgrad,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);
if mod(it,100)==0
disp(it);
end
end
function [out,loss,NNgrad,grad1,grad2]=gradients(dlnet,dlx,t)
out=forward(dlnet,dlx);
loss2=sum((out(1,:)-t(1,:)).^2)+sum((out(2,:)-t(2,:)).^2)+sum((out(3,:)-t(3,:)).^2)+sum((out(4,:)-t(4,:)).^2)+sum((out(5,:)-t(5,:)).^2)+sum((out(6,:)-t(6,:)).^2);
loss=loss2;
[NNgrad]=dlgradient(loss,dlnet.Learnables);
end
-------------------------------------------------------------------------------------------------------------------------------------------------
Thanks for reading my question. I hope that a great person can answer.
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!