Comparing two row vectors to find constant slope for steady state condition

2 vues (au cours des 30 derniers jours)
I am comparing two rows to find if at any point I am getting a uniform slope (a condition for steady state let's say in a diffusion problem)
c2(N+1,N+1)=9.90083146790674e-07; % Doing this to add an extra index so I can loop through this 100*100 matrix
for i = 1:N
p(:,i) = c2(:,i)-c2(:,i+1);
if p(:,i) < 1e-10 % I wany to see if the slope is uniform/0 so I can ascertain if my solution has reached steady state (for a diffusion problem)
disp(i)
end
end
Thanks!
  2 commentaires
Mathieu NOE
Mathieu NOE le 17 Mar 2021
hello
so basically you are doing a difference (like diff) and compare that to a threshold.
That's a valid approach to find a constant slope condition as you say (steady state)
so what is the issue ? what are you willing to do ?
Hashim
Hashim le 17 Mar 2021
Modifié(e) : Hashim le 17 Mar 2021
Hi Sorry I got the wrong variable here... it's actually c2 (see attached file) that I am concerned with. if you run the code you will find it output a graph (figure 2) with two y axis. I wish to know at what time the slope on the right curve is removed or lessened signifncatly so I can know that my system is at a steady state.

Connectez-vous pour commenter.

Réponse acceptée

Mathieu NOE
Mathieu NOE le 17 Mar 2021
Hi again
so I introduced the first and second derivative of c2 and plotted in figure 3
Attached is the function to do a finite difference derivation better than using diff (or alike)
as the second derivative goes to zero in the second half of the x data, you can tell the system has reached a steady state
main code (modified) below :
% function pdepe_philip_v7a
% 5- We now add a second order reaction to the mix and try to study the
% effects of this reaction on the concentration output of the system
% Also, to understand the concept of reaction layers and how they can explain
% behavior or our system
% Solve for Substrate concentration as well
global D_M D_S M_bulk n F m Area R S_bulk k1
n = 1; % No. of Electrons Involved
F = 96485.3329; % sA/mol
R = 8.3145; % kgcm^2/s^2.mol.K
D_M = 5e-06; % cm^2/s
D_S = 5e-06; % cm^2/s (???)
l = 0.01; % cm
Area = 1; % cm^2
M_bulk = 1e-06; % mol/cm^3
S_bulk = 1e-04; % mol/cm^3
m = 0; % Cartesian Co-ordinates
k1 = 1e+05;
N = 100;
% computational cost of the solution depends weakly on the length of tspan
t = linspace(0, 10, N); % s
% xmesh (Determines the computational cost)
x = linspace(0, l, N);
sol = pdepe(m, @pdev7, @pdev7ic, @pdev7bc, x, t);
c1 = sol(:, :, 1); % Mox Conc.
c2 = sol(:, :, 2); % Substrate Conc.
c3 = sol(:, :, 3); % Mred Conc.
% % Conc. Profiles (3D)
% figure(1)
% surf(x,t,c2);
% view(0, 0);
% xlabel('x');
% ylabel('t(sec)');
% zlabel('Concentration');
% % dc/dt [Glucose]
% figure(3);
% plot(x, c1( 2:N, :));
SS = 94;
% dc/dt [Os] + [Glucose]
figure(2);
plotyy(x, c1( SS, :), x, c2( SS,: ));
xlabel('x (cm)'); ylabel('[Os^3] (mol/cm^3)');
hold on;
% draw a line for sigma_kinetic/reaction layer [cm]
x_k = sqrt(((D_S*M_bulk)+(D_M*S_bulk))/...
(k1*(M_bulk+S_bulk).^2));
if S_bulk > M_bulk
xl = [x_k, x_k];
yl = [-M_bulk*2, M_bulk*2];
line(xl, yl, 'Color','green','LineStyle','--','LineWidth',2);
else
xl = [l-x_k, l-x_k];
yl = [-M_bulk*2, M_bulk*2];
line(xl, yl, 'Color','g','LineStyle','--','LineWidth',2);
end
hold off;
%% plot of first and second derivative of C2
[dc2, ddc2] = firstsecondderivatives(x,c2( SS,: ));
figure(3);
subplot(3,1,1),plot(x,c2( SS,: ))
xlabel('x (cm)'); ylabel('C2');
subplot(3,1,2),plot(x,dc2)
xlabel('x (cm)'); ylabel('dC2/dx');
subplot(3,1,3),plot(x,ddc2)
xlabel('x (cm)'); ylabel('d²C2/dx²');
% % Mred Flux at x=0
% figure(4);
% subplot(4,1,1);
% plot(t, c1( :,1));
% xlabel('time (s)'); ylabel('dM/dx @ x=0)');
%
% % Mred Flux at x=d
% subplot(4,1,2);
% plot(t, c1(:,N));
% xlabel('time (s)'); ylabel('dM/dx @ x=d)');
%
% % Substrate Flux at x=d
% subplot(4,1,3);
% plot(t, c2(:,N));
% xlabel('time (s)'); ylabel('dS/dx @ x=d)');
%
% % Mred Flux at x=0 - Mred Flux at x=0
% subplot(4,1,4);
% plot(t, c1(:,N)-c1(:,1));
% xlabel('time (s)'); ylabel('dM/dx@x=d-dM/dx@x=0');
asd = c1(:,N-1) - c1(:,N);
c1(N+1,N+1)=9.90083146790674e-07;
for i = 1:N
p(:,i) = c1(:,i)-c1(:,i+1);
if p(:,i) < 1e-10
disp(i)
end
end
as = 1
% end
%% pdepe Function That Calls Children
%%
function [a, f, s] = pdev7(x, t, c, DuDx)
global D_M D_S k1
a = [1; 1; 1];
f = [D_M; D_S; D_M].*DuDx;
% c(1)--> Mox(x,t) || c(2)--> S(x,t) || c(3)--> Mred(x,t)
s = [-(k1*c(1)*c(2)); -k1*c(1)*c(2); k1*c(1)*c(2)] ;
end
%% Initial Condition
%%
function c0 = pdev7ic(x)
global S_bulk M_bulk
c0 = [M_bulk; S_bulk; M_bulk];
end
%% Boundry Conditions
%%
function [pl, ql, pr, qr] = pdev7bc(xl, cl, xr, cr, t)
global M_bulk S_bulk n F R
E0 =0.2;
E =1.2;
alpha=exp((E-E0)*((n*F)/(R*298.15)));
pl =[cl(1)-((M_bulk*alpha)./(1+alpha)); 0; cl(3)-(M_bulk*(1/(1+alpha)))];
ql =[0; 1; 0];
pr =[0; cr(2)-S_bulk; 0];
qr =[1; 0; 1];
end
%% Analytical Portion Solution
%%
  12 commentaires
Hashim
Hashim le 6 Avr 2021
How about this, anyways I've accepeted the answer, thank you extremely much for your help so far.
for i = 1:length(t)
if abs(ddy(i)) < 1e-9
disp(i)
end
end
Mathieu NOE
Mathieu NOE le 6 Avr 2021
you can do the same without a for loop
ind = find(abs(ddy(i)) < 1e-9);
disp(t(ind))

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur MATLAB dans Help Center et File Exchange

Produits


Version

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by