identity matrix nth order

1 vue (au cours des 30 derniers jours)
Jasneet Singh
Jasneet Singh le 19 Mar 2021
Réponse apportée : VBBV le 27 Fév 2022
n = [1:1:20];
M=eye(n).*0.02
its not working !! i got an error that says eye() can't draw n dimensional arrays..can it be corrected ?
if not is there any other alternative to this?

Réponses (2)

ANKUR KUMAR
ANKUR KUMAR le 19 Mar 2021
Modifié(e) : ANKUR KUMAR le 19 Mar 2021
n=20;
eye(n) % identity matrix of order 20
eye(randi(50,1,1)) % identity matrix of a random order generated by randi

VBBV
VBBV le 27 Fév 2022
n = [1:1:20];
for k = 1:length(n)
M{k}=eye(n(k)).*0.02;
X = sprintf('Identity matrix of order %0d',k);
disp(X)
I = M{k}
end
Identity matrix of order 1
I = 0.0200
Identity matrix of order 2
I = 2×2
0.0200 0 0 0.0200
Identity matrix of order 3
I = 3×3
0.0200 0 0 0 0.0200 0 0 0 0.0200
Identity matrix of order 4
I = 4×4
0.0200 0 0 0 0 0.0200 0 0 0 0 0.0200 0 0 0 0 0.0200
Identity matrix of order 5
I = 5×5
0.0200 0 0 0 0 0 0.0200 0 0 0 0 0 0.0200 0 0 0 0 0 0.0200 0 0 0 0 0 0.0200
Identity matrix of order 6
I = 6×6
0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200
Identity matrix of order 7
I = 7×7
0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200
Identity matrix of order 8
I = 8×8
0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 9
I = 9×9
0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 10
I = 10×10
0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 11
I = 11×11
0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0
Identity matrix of order 12
I = 12×12
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0
Identity matrix of order 13
I = 13×13
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0
Identity matrix of order 14
I = 14×14
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0
Identity matrix of order 15
I = 15×15
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0
Identity matrix of order 16
I = 16×16
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0
Identity matrix of order 17
I = 17×17
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0
Identity matrix of order 18
I = 18×18
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0
Identity matrix of order 19
I = 19×19
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
Identity matrix of order 20
I = 20×20
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
Try using a loop

Catégories

En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by