Appropriate optimization method for solving equation with unknown exponent
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Venkatesh Madhukar Deshpande
le 23 Mar 2021
Réponse apportée : Venkatesh Madhukar Deshpande
le 24 Mar 2021
I want to solve for x(1) and x(2). x(2) is exponent. sigmaexp are experimental values. sigmanum are the values which matlab will calculate by varying x(1) and x(2). The optimized values are the one which minimize the expr as shown in the code below.
A = 332.8668;
B = 128.6184;
n = 0.4234;
s = table2array(ExpDataMatlab);%I have imported this data from an .xlsx file
sigmaexp = s(:,2);
eps = s(:,1);
epsdot1 = s(:,3);
x = optimvar('x',2,'LowerBound',[194.651,1.7835],'UpperBound',[12989,14.5453]);
initialpt.x = [6000,7];
expr = optimexpr;
sigmanum = @(x)(A+B*(eps.^n)).*(1+(epsdot1./x(1)).^(1/x(2)));
i = length(sigmaexp);
expr = (1/i)*sum((sqrt((sigmaexp-sigmanum(x)).*conj(sigmaexp-sigmanum(x)))./sigmaexp))*100;
If I run the above code I get the error,
Error using optim.internal.problemdef.operator.PowerOperator
Exponent must be a finite real numeric scalar.
Error in optim.internal.problemdef.Power
One way of tackling this issue is to change sigmanum as follows so that x(2) is no more in power form
sigmanum = @(x)(A+B*(eps.^n)).*(1+exp((1/x(2)).*log(epsdot1./x(1))));
However, this expression is valid only if log(epsdot1./x(1)) > 0. However, this is not the case. Therefore, solver like lsqlin,lsqcurvefit,fmincon, etc. cannot be used. Can you suggest me which optimization method can I use like genetic algorithm, surrogate optimization? Based on that, I will read further and solve my problem. Thank you.
0 commentaires
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Genetic Algorithm dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!