Solving a non linear ODE with Matlab ode functions
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Otoniel Diaz
le 6 Juin 2013
Commenté : RahulTandon
le 6 Juil 2015
I need to solve a non linear ODE. I want to use one of the ODE matlab functions if possible. However the problem is that it is not possible for me to convert it to a first order differential equation. The differential equation that I want to solve contains terms of this type: (y")^2*x^2+2*y*y"+(y')^2. As you can see the higher exponential is in the higher order term of the equation. Any way to solve this type of equations?
1 commentaire
RahulTandon
le 6 Juil 2015
Use solve() the solve the equations algeabraically. Get the solutions to teh quadratic equations and then solve using ODExx for nth order diff equations!! Send copy of teh actual problem. if you can.
Réponse acceptée
Roger Stafford
le 6 Juin 2013
Try using 'ode15i' which can use implicit differential equations. In your example you would presumably have the two components in your function handle:
(y'(2))^2*t^2+2*y(1)*y'(2)+(y(2))^2 = 0
y'(1)-y(2) = 0
0 commentaires
Plus de réponses (1)
Iván
le 6 Juin 2013
you can define a system of equations like:
y'(2)= y(1);
y'(3)= y(2);
so that
y'(3)=y''(1);
in this way you can go from your equation to a ordinary diferential equation system and use any of the matlab ode solvers.
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!