Lorenz Equation using Newton's Method
14 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am doing my project on writing Matlab code for the Lorenz equation using Newton's Method. My task was to write a code by using while loop so that the roots converge. I have posted my code below, where I couldn't able get the convergence.
r=28; sigma=10; beta=8/3;
x1=0; y1=0; z1=0;
x2=sqrt(beta*(r-1)); y2=sqrt(beta*(r-1)); z2=r-1;
x3=-sqrt(beta*(r-1)); y3=-sqrt(beta*(r-1)); z3=r-1;
nx=500; nz=500;
xmin=-40; xmax=40; zmin=-40; zmax=40;
x_grid=linspace(xmin,xmax,nx); z_grid=linspace(zmin,zmax,nz);
[X,Z]=meshgrid(x_grid,z_grid);
RelTol=1.e-06; AbsTol=1.e-09;
for i=1:3
if i==1 , x=x1; y=y1; z=z1; end
if i==2 , x=x2; y=y2; z=z2; end
if i==3 , x=x3; y=y3; z=z3; end
error=Inf;
for j=1:nx
for k=1:nz
y0=3*sqrt(2);
while error<=max(RelTol*max(abs([x,y,z])),AbsTol)
J = [-sigma, sigma,0;r-z_grid(k),-1,-x_grid(j);y0,x_grid(j),-beta];
rhs = -[(sigma*(y0-x_grid(j)));(x_grid(j)*(r-z_grid(k))-y0);((x_grid(j)*y0)-(beta*z_grid(k)))];
delta_xyz= J\rhs;
x_grid(j) = x_grid(j) + delta_xyz(1);
y0 = y0+delta_xyz(2);
z_grid(k) = z_grid(k) + delta_xyz(3);
error=max(abs(delta_xyz));
end
X(j,k)=x_grid(j);
Z(k,j)=z_grid(k);
end
end
end
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!