Gradient Descent - fix

5 vues (au cours des 30 derniers jours)
Nektarios Liaskos
Nektarios Liaskos le 29 Mar 2021
Commenté : Aniket Anand le 6 Sep 2021
Hi all,
I have the following code for one of the assignments on Gradient Descent for Machine Learning, Coursera:
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
data = load('ex1data1.txt'); % read comma separated data
y = data(:, 2);
m = length(y); % number of training examples
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1);
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
delta = zeros(2, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
for i = 1:m
Xi = X(i,:);
hi = Xi*theta;
delta = delta + (hi-y(i))*(Xi');
end
delta = delta/m;
theta = theta - alpha*delta;
delta = 0;
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end
It gives me the following error code:
>> gradientDescent()
Not enough input arguments.
Error in gradientDescent (line 13)
J_history = zeros(num_iters, 1);
I cannot find an answer to this. Any idea how to fix it?

Réponse acceptée

Matt J
Matt J le 29 Mar 2021
Call your function with all 5 input arguments.
  6 commentaires
Samuel Valentin Lopez Valenzuela
i have the same problem , how did you use accessory files to fix it?
Aniket Anand
Aniket Anand le 6 Sep 2021
Can you please help me out
I don't know how to use accessory files

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by