Gradient Descent - fix
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Nektarios Liaskos
le 29 Mar 2021
Commenté : Aniket Anand
le 6 Sep 2021
Hi all,
I have the following code for one of the assignments on Gradient Descent for Machine Learning, Coursera:
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
data = load('ex1data1.txt'); % read comma separated data
y = data(:, 2);
m = length(y); % number of training examples
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1);
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
delta = zeros(2, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
for i = 1:m
Xi = X(i,:);
hi = Xi*theta;
delta = delta + (hi-y(i))*(Xi');
end
delta = delta/m;
theta = theta - alpha*delta;
delta = 0;
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end
It gives me the following error code:
>> gradientDescent()
Not enough input arguments.
Error in gradientDescent (line 13)
J_history = zeros(num_iters, 1);
I cannot find an answer to this. Any idea how to fix it?
0 commentaires
Réponse acceptée
Matt J
le 29 Mar 2021
Call your function with all 5 input arguments.
6 commentaires
Samuel Valentin Lopez Valenzuela
le 6 Août 2021
i have the same problem , how did you use accessory files to fix it?
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!