How can I convert x, y, and z which are functions of theta to theta function of x, y, and z?

4 vues (au cours des 30 derniers jours)
Hello,
I have three equations,
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
Every value except theta1,theta2, and theta3 are given.
I want to make the three equations as theta functions having x, y, and z variables.
Like a form of theta1 = .... , theta2 = ....., and theta3 = ....
Please let me know what command I can use to make the conversion.

Réponse acceptée

DGM
DGM le 6 Avr 2021
Modifié(e) : DGM le 6 Avr 2021
Something like this
syms theta1 theta2 theta3 x y z L l c b a
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
e1 = theta1==solve(eqn1,theta1)
e2 = theta2==solve(eqn2,theta2)
e3 = theta3==solve(eqn3,theta3)
  3 commentaires
DGM
DGM le 6 Avr 2021
If it works, just accept the answer so it's taken out of the queue.
Hwajin Choi
Hwajin Choi le 6 Avr 2021
Opps Sorry I forgot it. Thanks for the reminder!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by