How to "invert" integral function?
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello!
I'm trying to calculate the blackbody spectral radiance using planck function:
clc;
close all;
clear all;
% physical constants
h = 6.6260693e-34;
c = 299792485.0;
k = 1.380658e-23;
T = 6500;
f = @(wl) ((((2.0.*h.*c^2)./(wl*1e-6).^5).*(1.0./(exp(((h.*c)./(k.*T.*wl*1e-6)))-1))).*1e-6);
wl_range = [0.1:0.1:8.0];
BB = f(wl_range);
plot(wl_range,BB);
set(gca, 'YScale', 'log');
xlabel('\bf\fontname{arial}\fontsize{14}Wavelength [unm]');
ylabel('\bf\fontname{arial}\fontsize{14}Spectral Radiance [W.sr^{-1}.m^{-2}.{um}^{-1}]');
title('\bf\fontname{arial}\fontsize{14}Blackbody Source','Fontsize',14);

Then I integrated the wavelength range (from 0.1 to 8.0) and I got a power of 3.22e7 [W]
Power = integral(f,0.1,8.0)
Now, my problem!
I would like to do the oposite, just knowing the power value (and the temperature and the interested wavelength range) generate a curve as you can see on the plot above... do you have any solution how I can "invert" the integral?
Thank you in advance.
0 commentaires
Réponses (1)
David Hill
le 7 Avr 2021
I might not understand your question completely. If you know the temperature and interested wavelength range, the curve can be generated as you have already done. If you know the power and interested wavelength range, then the temperature can be found.
h = 6.6260693e-34;
c = 299792485.0;
k = 1.380658e-23;
syms T wl;
f =((((2.0*h*c^2)/(wl*1e-6)^5)*(1.0/(exp(((h*c)/(k*T*wl*1e-6)))-1)))*1e-6);
eqn=3.22e7==int(f,wl,.1,8);
t=vpasolve(eqn,T);
0 commentaires
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!