Inconsistency of angle function in finding angle of vectors
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Aleem Andrew
le 12 Avr 2021
Réponse apportée : Steven Lord
le 12 Avr 2021
Typing the command angle(1+i) yields an angle of 45 degrees, but typing angle(-1-2i) yields -2.0344. Why is the angle being measured clockwise from the x axis in one case and and counterclockwise in the other? Is there any more consistent way to find the angle of vectors, either measured clockwise or counterclockwise?
0 commentaires
Réponse acceptée
the cyclist
le 12 Avr 2021
I would not characterize this as an inconsistency, so much as a convention to report the value in the range [-pi,pi], rather than the [0,2pi] that you expected. (I feel obligated to point out that this is quite explicit in the documentation.)
Regardless of your opinion on that, all you need to do is calculate the result modulus 2pi, to get what you want
mod(angle(1+i),2*pi)
mod(angle(-2-i),2*pi)
0 commentaires
Plus de réponses (1)
Steven Lord
le 12 Avr 2021
Typing the command angle(1+i) yields an angle of 45 degrees,
No it doesn't. It returns the equivalent angle in radians, however.
A1 = angle(1+1i)
A2 = deg2rad(45)
abs(A2-A1)
but typing angle(-1-2i) yields -2.0344.
A3 = angle(-1-2i)
Correct.
Why is the angle being measured clockwise from the x axis in one case and and counterclockwise in the other?
"theta = angle(z) returns the phase angle in the interval [-π,π] for each element of a complex array z. The angles in theta are such that z = abs(z).*exp(i*theta)."
If you want the angles to be in the interval [0, π] instead add the negative angle to 2*pi.
A3pos = 2*pi+A3
theAngles = rad2deg([A3; A3pos])
These angles are:
diff(theAngles)
360 degrees apart.
0 commentaires
Voir également
Catégories
En savoir plus sur Resizing and Reshaping Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!