Problem with solution seemingly simple linear system of equations [0x1 sym]

7 vues (au cours des 30 derniers jours)
Hi, I have a problem with solve linear system of equations. Every time I got a solution = 0x1 sym.Could anyone tell what's wrong with my code?
clear
close all
d=32; %mm - Srednica tłoka
p1=0.585; %N/mm^2
p2=0.4;
F1=p1*pi*d^2/4;%N sila nacisku
F2=p2*pi*d^2/4;%N sila nacisku
L=[230 200 180 160 140 120 100 80 60 40]';
x_p1=[2.7 2.5 2.4 2.3 2.2 2.1 2 1.9 1.8 1.7]';
M1=F1*[L]*1e-3;%Nm
M2=F2*[L]*1e-3;%Nm
digits(8)
syms x1 x2
eqns=[F1*x1+M1*x2==x_p1]
xx=solve(eqns,[x1 x2])

Réponse acceptée

Stephan
Stephan le 16 Avr 2021
rewriting the system to matrix shows that this system has no solution, due to inconsistence:
d=32; %mm - Srednica tłoka
p1=0.585; %N/mm^2
p2=0.4;
F1=p1*pi*d^2/4;%N sila nacisku
F2=p2*pi*d^2/4;%N sila nacisku
L=[230 200 180 160 140 120 100 80 60 40]';
x_p1=[2.7 2.5 2.4 2.3 2.2 2.1 2 1.9 1.8 1.7]';
M1=F1*L*1e-3;%Nm
M2=F2*L*1e-3;%Nm
digits(8)
syms x1 x2
eqns=F1*x1+M1*x2
A = equationsToMatrix(eqns)
sol = linsolve(A, x_p1)
gives:
A =
[ (3744*pi)/25, (21528*pi)/625]
[ (3744*pi)/25, (3744*pi)/125]
[ (3744*pi)/25, (16848*pi)/625]
[ (3744*pi)/25, (14976*pi)/625]
[ (3744*pi)/25, (13104*pi)/625]
[ (3744*pi)/25, (11232*pi)/625]
[ (3744*pi)/25, (1872*pi)/125]
[ (3744*pi)/25, (7488*pi)/625]
[ (3744*pi)/25, (5616*pi)/625]
[ (3744*pi)/25, (3744*pi)/625]
Warning: Solution does not exist because the system is inconsistent.
> In symengine
In sym/privBinaryOp (line 1030)
In sym/linsolve (line 63)
In Untitled (line 15)
sol =
Inf
Inf
Maybe some errors in the coefficients?
  1 commentaire
Jan Tomaszewski
Jan Tomaszewski le 16 Avr 2021
Stephan, you have right, there is no exact solution. I made approximations using the function
x = lsqlin(C,d,A,b)
that determined the variables x1 x2.
Thanks for help.

Connectez-vous pour commenter.

Plus de réponses (0)

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by