Need to solve first order non-linear differential equation
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I need to solve first order non-linear differential equation to find the wave numbers of a Timoshenko beam for a certain slenderness ratio. I am actually trying to replicate the results of a paper.
Here is the code I have to do this:
%%%%%%
n1=1;
a0=1.875104068867879;
gamm=2.205;
syms a K real;
s = 1/K;
temp = a^2*(gamm^4+1)+s^2*(1+gamm^2);
b = sqrt(-temp+sqrt(temp^2-4*gamm^2*(gamm^2*a^4-a^2*s^2*(1+gamm^2))))/(sqrt(2)*gamm);
syms B real;
F1 = (a^2-B^2)*sin(a)*sinh(B)-a*B*(a^4+a^4*gamm^4+4*gamm^2*a^2*B^2+B^4*gamm^4+B^4)*cos(a)*cosh(B)/((B^2+gamm^2*a^2)*(a^2+gamm^2*B^2))-2*a*B;
dF1da = diff(F1, 'a');
dF1db = diff(F1, 'B');
dbdk = diff(b, 'K');
dbda = diff(b, 'a');
B = b;
dadk1 =eval(-dF1db*dbdk/(dF1da+dF1db*dbda));
f1=@(K,a) eval(dadk1);
%%The left boundary condition is undetermined for 0, so I can only put a %%number close to 0
for m=1:n1
options=odeset('MaxStep',0.01);
[K2,A(:,m)]=ode45(f1,[0.00001 0.4],a_bernoulli(m),options);
end
figure();
hold on;
grid on;
axis([0 0.4 0 12]);
for m=1:n1
plot(K2, A(:,m));
end
%%%%%
thank you
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!