Confusionmatrix for linear regression
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I'm using the code below to train a logistic regression classifier. I'd like to plot a confusion matrix but even though i waited 30 minutes, it doesn't show the matrix. I just run the code and it goes on debugging but never shows the result. The predicted and response matrix consits of 5000x1 matrix that has either 0 or 1. I don't think plotting a confusion matrix for this data would take that long. Can anybody help me about the problem ?
strokedata=importstroke("healthcare-dataset-stroke-data")
inputTable=strokedata;
predictorNames={'gender','age','hypertension','heart_disease','work_type','Residence_type','avg_glucose_level','bmi','smoking_status'}
predictors = inputTable(:, predictorNames)
response=inputTable.stroke
isCategoricalPredictor=[true,false,false,false,true,true,true,false,false,true]
successClass = double(1);
failureClass = double(0);
numSuccess = sum(response == successClass);
numFailure = sum(response == failureClass);
if numSuccess > numFailure
missingClass = successClass
else
missingClass = failureClass
end
successFailureAndMissingClasses = [successClass; failureClass; missingClass];
isMissing = isnan(response)
zeroOneResponse = double(ismember(response, successClass))
zeroOneResponse(isMissing) = NaN
% Prepare input arguments to fitglm.
concatenatedPredictorsAndResponse = [predictors, table(zeroOneResponse)]
GeneralizedLinearModel = fitglm(...
concatenatedPredictorsAndResponse, ...
'Distribution', 'binomial','link','logit')
yPredicted=predict(GeneralizedLinearModel,inputTable) > 0.47
plotconfusion(response,yPredicted)
6 commentaires
the cyclist
le 22 Avr 2021
I don't have the Deep Learning Toolbox. But
confusionchart(logical(response),yPredicted) % requires Stats & Machine Learning Toolbox
returned the chart in under a second. So, I think your instinct is correct. I'm not sure what's going on in your code.
Réponses (0)
Voir également
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!