what is IW and LW ; how 3 layers ( output code of nprtool )
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
% Input 1
x1_step1.xoffset = 0;
x1_step1.gain = 0.200475452649894;
x1_step1.ymin = -1;
% Layer 1
b1 = [21;-18;-15;12;-9;6;-3;0;3;-6;-9;-12;15;-18;-21];
IW1_1 = [-21;21;21;-21;21;-21;21;-21;21;-21;-21;-21;21;-21;-21];
% Layer 2
b2 = [-1.5481522238423293114;-0.7740761119211646557;0;-0.7740761119211646557;1.5481522238423293114];
IW2_1 = [0.18591536098364511154;0.40639192253934214305;-0.27042472258088517956;-0.13412187216347298824;0.54252530242902852198];
LW2_1 = [0.24501255112064976305 -0.603300841276200428 -0.31452233587919281588 0.07939424409636260116 0.44177212706927815322 -0.40403354541199126837 0.50751435892984475551 -0.54319460220556725627 0.47092317372014752541 -0.014194546924077773228 0.11388969568404412602 -0.60856374907308730116 0.1199469037241999575 0.54482429435198376222 0.073698545566984838273;-0.32079984547876161383 -0.15570837924466876534 0.54270824861039013154 -0.012900971754842980449 -0.58084194695714630452 0.56199828111983707313 0.49164542229830543452 0.31541117114819716694 -0.59500114066111353672 0.28464496073269612841 -0.24308627374845612201 0.26317896635071003075 0.12964031314271853845 0.46422927590403095799 0.1400966963385319175;0.3661099146813505123 -0.088863383421529829054 0.50751759546088714981 -0.32434151025360968834 -0.23677560402537684014 0.060968908460366254276 -0.024648639739306959368 -0.51859575552674685994 0.48481885254804552021 -0.41902180208207762124 0.65900575796944338425 0.51813679145102342627 0.023153701831279262929 -0.54490372774253270638 -0.28066527042325184471;-0.28720257525894682393 -0.26883262902038468356 -0.14117619198974820649 0.67274961594904902906 0.34170048870571251287 -0.34148005050612378897 -0.07865734225189835449 -0.19791789712245583255 -0.29112457961187176991 -0.38974765887977130818 0.54393856786292726913 -0.5243254228375202608 -0.67653062572906819128 -0.19977619038530908258 0.4095533661557646532;-0.31425113275532029489 -0.29530014251238639877 -0.029059725654305205295 -0.44664224747398562076 0.20384193873498809846 0.11094219649895625812 -0.26579744335546978684 -0.14702767416474224471 -0.35250979683052890978 0.6725727859643003681 -0.43767651132380086532 -0.65088838030431739323 0.2667693286280342635 -0.36437893831932721689 0.4174388089989150008];
% Layer 3
b3 = -0.65223372011098734724;
IW3_1 = 0.56218453182077365859;
LW3_1 = [-0.29780313517079992636 -0.89140529220004594002 0.41740923395844964361 0.98585688260799231308 -0.67504702962022644641 -0.77286732265590618596 0.82575085177308693574 -0.036686039254889557526 0.70361190401670703487 0.61982760620841070853 -0.62648091146031958942 -0.50560028650867350208 -0.89162231726546115063 0.21792291290775667179 0.55446485846902082706];
LW3_2 = [0.022128178225443217997 -0.94449982310345648173 0.98077056313375110541 0.0018798475072103748573 -0.33600502607768722996];
% Output 1
y1_step1.ymin = -1;
y1_step1.gain = 0.2;
y1_step1.xoffset = 0;
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Define Shallow Neural Network Architectures dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!