How to pre-allocate an array for 6 DOF PUMA robot?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to prepare a neural network for 6 DOF robot. I have written a following program, but since I am not able to pre-allocate the array size, this program is taking too many days to run. Even after that it is not giving me the results & gets hanged in between.
Below is the program I have written - *****************************************************************************
% Constants as defined by for PUMA robot
a2 = 431.8;
a3 = -20.32;
d2 = 149.09;
d4 = 433.07;
d6 = 56.25;
% Joint Range of an angle Theta for PUMA Robot links.
T1=-160*pi/180:10*pi/180:160*pi/180;%Convert to radians.
T2=-225*pi/180:10*pi/180:45*pi/180;%Convert to radians.
T3=-45*pi/180:10*pi/180:225*pi/180;%Convert to radians.
T4=-110*pi/180:10*pi/180:70*pi/180;%Convert to radians.
T5=-100*pi/180:10*pi/180:100*pi/180;%Convert to radians.
% Index used
i=1;
j=1;
k=1;
l=1;
m=1;
n=1;
% Calculating the length of Joint range.
L1=(length(T1));
L2=(length(T2));
L3=(length(T3));
L4=(length(T4));
L5=(length(T5));
% Loop to calculate the X,Y&Z coordinates.
for i=1:1:L1
for j=1:1:L2
for k=1:1:L3
for l=1:1:L4
for m=1:1:L5
% Equations used to calculate Coordinates for PUMA robot with T Matrix
% X = COS1[d6(COS23*COS4*SIN5+SIN23*COS5)+
% (SIN23*d4)+(a3*COS23)+(a2*COS2)]-
% [SIN1(d6*SIN4*SIN5+d2)] (based on this formula.)
X= cos(T1(i))*(d6*((cos(T2(j)+T3(k))*cos(T4(l))*sin(T5(m)))+
(sin(T2(j)+T3(k))*cos(T5(m))))+(sin(T2(j)+T3(k))*d4)+
(a3*cos(T2(j)+T3(k)))+(a2*cos(T2(j))))-
sin(T1(i))*(d6*sin(T4(l))*sin(T5(m))+d2);
% Y = SIN1[d6(COS23*COS4*SIN5+SIN23*COS5)+
% (SIN23*d4)+(a3*COS23)+(a2*COS2)]+
% [COS1(d6*SIN4*SIN5+d2)] (based on this formula.)
Y= sin(T1(i))*(d6*((cos(T2(j)+T3(k))*cos(T4(l))*sin(T5(m)))+
(sin(T2(j)+T3(k))*cos(T5(m))))+(sin(T2(j)+T3(k))*d4)+
(a3*cos(T2(j)+T3(k)))+(a2*cos(T2(j))))+
cos(T1(i))*(d6*sin(T4(l))*sin(T5(m))+d2);
% Z = [d6(COS23*COS5-SIN23*COS4*SIN5)]+
(COS23*d4)-(a3*SIN23)-(a2*SIN2) (based on this formula.)
Z= d6*((cos(T2(j)+T3(k))*cos(T5(m)))-
(sin(T2(j)+T3(k))*cos(T4(l))*sin(T5.(m))))+
(cos(T2(j)+T3(k))*d4)-(a3*sin(T2(j)+T3(k)))-(a2*sin(T2(j)));
% Storing values of X, Y & Z coordinates. Also respective angle of the same.
[aa(n)]=[X];
[bb(n)]=[Y];
[cc(n)]=[Z];
tt1(n)=T1(i);
tt2(n)=T2(j);
tt3(n)=T3(k);
tt4(n)=T4(l);
tt5(n)=T5(m);
n=n+1;
end
end
end
end
end
****************************************************************************
I have Matlab 7.0 version.
13 commentaires
dpb
le 11 Juil 2013
Excepting for leaving in an inordinate number of blank lines...
I thought I made the following comment before but I don't see it...
% Equations used to calculate Coordinates for PUMA robot with T Matrix
% X = COS1[d6(COS23*COS4*SIN5+SIN23*COS5)+
% (SIN23*d4)+(a3*COS23)+(a2*COS2)]-
% [SIN1(d4*SIN4*SIN5+d2)] (based on this formula.)
X= cos(T1(i))*(d6*((cos(T2(j)+T3(k))*cos(T4(l))*sin(T5(m)))+
(sin(T2(j)+T3(k))*cos(T5(m))))+(sin(T2(j)+T3(k))*d4)+
(a3*cos(T2(j)+T3(k)))+(a2*cos(T2(j))))-
sin(T1(i))*(d6*sin(T4(l))*sin(T5(m))+d2);
In comparing the definition equation to your code, the term SIN1[d4...
on the third line seems to be sin(T1*d6... in the code. But if d6 is really d4 then it would seem the COS1[d6 in the first line should be implemented as cos(T1*d4... so I'm left to conclude either the comment is wrong or the code doesn't match the comment.
Looks to me like you first need to really double-check the equations.
Réponse acceptée
Jan
le 10 Juil 2013
A demonstration of how to avoid repeated calculations:
for i=1:1:L1
c1 = cos(T1(i));
c5 = sin(T1(i));
for j=1:1:L2
c7 = a2*cos(T2(j));
for k=1:1:L3
c2 = cos(T2(j)+T3(k));
c4 = sin(T2(j)+T3(k));
for l=1:1:L4
c3 = cos(T4(l)) * c2;
c6 = c5*(d6*sin(T4(l));
for m=1:1:L5
X = c1 * (d6 * (c3 * sin(T5(m)) + (c4 * cos(T5(m)))) + ...
(c4 * d4) + (a3 * c2) + c7) - c6 * sin(T5(m)) + d2);
etc.
Plus de réponses (1)
Jan
le 10 Juil 2013
The missing readability of the code discourages me to read it. But I can see two problems which reduces the speed at first glance:
- Avoid repeated calculations, e.g. cos(T2(j)+T3(k)) is calculated several times. Using a temporary variable instead is much better.
- Pre-allocate the outputs. There is no efficient way if you omit this.
0 commentaires
Voir également
Catégories
En savoir plus sur Install Products dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!