Fit Normalised Gaussian to data

7 vues (au cours des 30 derniers jours)
Dana Shoukroun
Dana Shoukroun le 27 Avr 2021
Modifié(e) : Matt J le 28 Avr 2021
Hi,
I am trying to fit a nromalised Gaussian to my data, using
f(x) = a/sqrt(2pi*sigma^2) * exp (-(x-mu)^2/sigma^2)
However the fit function in matla does not accound for the sigma coefficient. Is there a way to modify the equation of the fit function? I tried to do a manual fit but it doesn't seem to work.
Thanks
  2 commentaires
Alex Sha
Alex Sha le 28 Avr 2021
Hi, post out your data please.
Matt J
Matt J le 28 Avr 2021
I am trying to fit a nromalised Gaussian to my data, using
Shouldn't it be,
f(x) = a/sqrt(2pi*sigma^2) * exp (-0.5*(x-mu)^2/sigma^2)

Connectez-vous pour commenter.

Réponses (1)

Matt J
Matt J le 28 Avr 2021
Modifié(e) : Matt J le 28 Avr 2021
You can use,
Example:
%% Synthetic data
fn=@(x,a,mu,sigma) a./sqrt(2*pi*sigma^2) .* exp (-(x(:)-mu).^2/2/sigma^2);
xdata=linspace(-3,9,20).';
ydata=fn(xdata,1,3,2)+0.006*randn(size(xdata));
%% Do the fit
ulb={0,[],[],[]};
[params,resnorm, residual,exitflag,output]=gaussfitn(xdata,ydata,[],ulb,ulb);
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
[A,mu,variance]=deal(params{2:4});
sigma=sqrt(variance);
a=A*sqrt(2*pi*variance);
%% Verify
xs=linspace(min(xdata),max(xdata),1000);
plot(xdata,ydata,'o',xs, fn(xs,a,mu,sigma));shg

Catégories

En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by