Obtain partial or intermediate (output) results from genetic algorithm

3 vues (au cours des 30 derniers jours)
Tessa Kol
Tessa Kol le 29 Avr 2021
Commenté : Tessa Kol le 29 Avr 2021
Dear all,
I defined a very long function to be optimized by the genetic algorithm. How do I obtain the output of
(predict(Model{1,3},x)-min(Y1))/(Y1_target-min(Y1)) and predict(Model{1,3},x)
when a optimal solution is found?
I gather that you have to access the intermediate results of the genetic algorithm in some way, but I am not sure if that is the right approach and how one should accomplish this when it is the right approach.
%% Loading the Data
load([pwd,'\taguchi_sample_irregular.mat'])
%% Parameters
% Predictors
X = taguchi_multi_variate_samples;
Y = [Payload(:) Work(:) Overflow(:)];
% Response 1 (i.e. payload objective)
Y1 = Payload;
% Response 2 (i.e. work objective)
Y2 = Work;
% Response 3 (i.e. spillage objective)
Y3 = Overflow;
%% Surogate modeling of the data set
% SVM regression model with polynominal kernel functions
Model{1,3} = fitrsvm(X,Y1,'KernelFunction','polynomial', 'KernelScale','auto');
Model{2,3} = fitrsvm(X,Y2,'KernelFunction','polynomial', 'KernelScale','auto');
Model{3,3} = fitrsvm(X,Y3,'KernelFunction','polynomial', 'KernelScale','auto');
%% Optimization
% Target values for each response/objective
Y1_target = max(Y1);
Y2_target = max(Y2);
Y3_target = max(Y3);
fun = @(x) [-((((0.*(predict(Model{1,3},x) < min(Y1))) + ...
((predict(Model{1,3},x)-min(Y1))/(Y1_target-min(Y1))).*(min(Y1) < predict(Model{1,3},x) & predict(Model{1,3},x) < Y1_target) + ...
(1.*(predict(Model{1,3},x) > Y1_target))) .* ...
((0.*(predict(Model{2,3},x) < min(Y2))) + ...
((predict(Model{2,3},x)-min(Y2))/(Y2_target-min(Y2))).*(min(Y2) < predict(Model{2,3},x) & predict(Model{2,3},x) < Y2_target) + ...
(1.*(predict(Model{2,3},x) > Y2_target))) .* ...
((0.*(predict(Model{3,3},x) < min(Y3))) + ...
((predict(Model{3,3},x)-min(Y3))/(Y3_target-min(Y3))).*(min(Y3) < predict(Model{3,3},x) & predict(Model{3,3},x) < Y3_target) + ...
(1.*(predict(Model{3,3},x) > Y3_target))))^(1/3))];
[x, fval, exitflag,output] = ga(fun,4,[],[],[],[],[0 0 0 0], [200 200 200 200]);
  2 commentaires
Alan Weiss
Alan Weiss le 29 Avr 2021
Sorry, I don't quite understand your question. After you get the result x what happens when you try to run
predict(Model{1,3},x)
This was one of your questions, and I am sure that you have tried this, but what happens?
Alan Weiss
MATLAB mathematical toolbox documentation
Tessa Kol
Tessa Kol le 29 Avr 2021
Thank you for your reply. Lucky for me I already solved the problem. I indeed try to run:
predict(Model{1,3},x)
I get the predicted output of first objective corresponding to the optimal set. In total I combined three objectives into one function. "x" (small x) is the optimal set that is predicted by the genetic algorithm. If you are interested in more information about what I implemented in matlab, here is a useful link: https://www.itl.nist.gov/div898/handbook/pri/section5/pri5522.htm
It is called the desirability approach and the function I defined corresponds the formula for the overall desirability.

Connectez-vous pour commenter.

Réponses (0)

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by