How to Scale Gradient Field for large z-values?

4 vues (au cours des 30 derniers jours)
Niklas Kurz
Niklas Kurz le 29 Avr 2021
Commenté : Niklas Kurz le 12 Mai 2024
I want to plot a function R^2 -> R with gradient Field beneath:
f2 = @(x,y) 1./sqrt(x.^2+y.^2);
[u2,v2] = meshgrid(-1:0.01:1);
[du2,dv2] = gradient(f2(u2,v2));
s = surf(u2,v2,f2(u2,v2));
hold on
contour(u2,v2,f2(u2,v2))
hold on
norm = 1./sqrt(du2.^2+dv2.^2);
quiver(u2,v2,du2./norm,dv2./norm,'LineWidth',2)
axis([-1 1 -1 1 0 10])
caxis([0,10])
colormap(cool)
alpha(s,0.95)
shading flat
Sadly the gradient field is not visible. Probably because it's too small, f2 get's too large and I'm lacking of the mathmatical knowledge to adjust it properly

Réponse acceptée

Anurag Ojha
Anurag Ojha le 8 Mai 2024
Hello Niklas
One way to adjust it is by normalizing the gradient vectors before plotting them.
Here's an updated version of your code:
f2 = @(x,y) 1./sqrt(x.^2+y.^2);
[u2,v2] = meshgrid(-1:0.01:1);
[du2,dv2] = gradient(f2(u2,v2));
% Normalize the gradient vectors
norm = sqrt(du2.^2+dv2.^2);
du2_norm = du2./norm;
dv2_norm = dv2./norm;
s = surf(u2,v2,f2(u2,v2));
hold on
contour(u2,v2,f2(u2,v2))
hold on
quiver(u2,v2,du2_norm,dv2_norm,'LineWidth',2)
axis([-1 1 -1 1 0 10])
caxis([0,10])
colormap(cool)
alpha(s,0.95)
shading flat
This code normalizes the gradient vectors by dividing the du2 and dv2 components by their magnitude (norm). This ensures that the length of each vector is 1, making them visible in the plot.
  1 commentaire
Niklas Kurz
Niklas Kurz le 12 Mai 2024
Thanks for cleaning up open questions like this one that I have asked long ago x) Today I'd probably know better and woud have done it similar to you.

Connectez-vous pour commenter.

Plus de réponses (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by